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I. ABSTRACT

Traditional design of wireless networks mainly focuses on

system capacity and spectral efficiency. As green network-

ing is an inevitable trend, energy-efficient design for future

wireless networks becomes paramount. In this paper, we

address energy efficient resource management in downlink

Orthogonal Frequency Division Multiple Access (OFDMA)

networks. The focus is targeted towards multi-cell networks,

which are composed of multiple Base Stations (BSs) sharing

the available radio resources. Consequently, greater emphasis

is given to techniques that take inter-cell interference into

account. Resource management in our context refers to the task

of allocating the radio resources in order to maximize energy

efficiency. We devise resource management techniques that

jointly tackle the problems of scheduling and power control.

Accordingly, we adopt two different approaches: a centralized

approach where BSs coordinate in order to reach a globally

optimal energy efficient solution; and a distributed approach

where BSs selfishly strive to maximize their own energy

efficiency. We portray the centralized approach as a convex

optimization problem; whereas, we have recourse to non-

cooperative game theory to model the distributed approach.

Particularly, we show that the non-cooperative game converges

to a unique Nash equilibrium in low and high interference

scenarios. We perform thorough numerical simulations to

quantify the discrepancy between the centralized and dis-

tributed approaches, and identify the conditions where they

have precedence over the state-of-the-art. Moreover, the simu-

lation results highlight the fast convergence of our algorithms,

which is a precious asset for realistic deployments.
Index Terms—Convex optimization, energy efficiency, multi-

cell OFDMA, Nash equilibrium, non-cooperative game theory,
power control, scheduling, wireless networks.

II. INTRODUCTION

THe escalation of power consumption in wireless networks

has led to a great amount of greenhouse gas emission

and a large operational expenditure for network operators.

Increasing attention has been paid to green networking and

has prompted new waves of research and standard develop-

ment activities [1]–[3]. In particular, it is reported that over
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80% of power consumption in mobile telecommunications is

squandered in the radio access network, more specifically at

the Base Station (BS) level [4]. Consequently, acute focus is

devoted to energy efficient radio resource management to keep

pace with the pervasive green trend in networking. In this

context, joint power control and scheduling is one of the most

promising approaches to increase energy efficiency [5]–[8].

Orthogonal Frequency Division Multiple Access (OFDMA)

is widely accepted as the access scheme for many wireless

systems, such as 4G downlink systems, thanks to its nu-

merous merits, especially in terms of spectral efficiency. In

such systems, the intra-cell interference is mostly mitigated

and can be ignored. However, the inter-cell interference is a

momentous problem in OFDMA-based networks, owing to the

expected densification of BSs and the support of universal

frequency reuse in order to increase spectral efficiency [9]. As

inter-cell interference cannot be canceled by signal processing

techniques, intelligent Radio Resource Management (RRM)

is required. The latter should lessen the impact of inter-

cell interference and increase energy efficiency. Therefore,

particular attention must be dedicated to energy-efficient RRM

in OFDMA-based multi-cell networks. A successful approach

to this challenging design must exhibit satisfying performances

in terms of energy efficiency, computation complexity, and

convergence time.

In general, existing RRM techniques are divided into two

broad categories: centralized approaches and distributed ap-

proaches [10]. Centralized approaches enable to compute a

global energy efficient state of the network. Such solutions

necessitate coordination and signaling between the BSs. Dis-

tributed approaches enable autonomous BSs to maximize their

own energy efficiency leading to complexity reduction at the

cost of lower efficiency.

In this paper, we tackle the energy efficient joint scheduling

and power control problem in multi-cell OFDMA networks.

We formulate the centralized approach as a convex optimiza-

tion problem and devise algorithms that enable to rapidly

compute an optimal solution. We also propose a distributed

approach for this problem in which we have recourse to

non-cooperative game theory. In particular, we introduce dis-

tributed algorithms that provably converge to a Nash Equi-

librium (NE). We perform thorough numerical simulations

for assessing the performance of our approaches in various

interference conditions.

The rest of the paper is organized as follows. In Section

III, related work is explored. In Section IV, we put forward

the models adopted for the network power consumption, the

Signal-to-Interference-and-Noise-Ratio (SINR), and the net-
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work utility function. In Section V and Section VI, we detail

the centralized approach and the projected-gradient based

solution, respectively. The distributed approach is introduced

in Section VII and the corresponding algorithmic solution as

well as the convergence proofs are explained in Section VIII.

In Section IX, we present extensive numerical results that

corroborate the relevance of our devised approaches. Finally,

we outline practical guidelines to implement the proposed

algorithms in Section X and conclude in Section XI.

III. RELATED WORK

The inevitable need to improve energy efficiency in cellular

networks has been established, and has led to numerous re-

search works on the hot topic of green radio communications.

Energy efficient RRM techniques are covered in [10] where a

pertinent taxonomy of power saving strategies in wireless net-

works is introduced. The recent findings in the area of multi-

cell networks are surveyed in [11]. Further, green scheduling

and power control for both classic and heterogeneous cellular

networks are covered in [12].

Maximizing the energy efficiency in a wireless network is

equivalent to maximizing the amount of data bits successfully

delivered to the receiver for each consumed power unit.

Given the non-convex, fractional nature of this objective, an

effective mathematical tool for energy efficiency maximization

is fractional programming in optimization theory. The latter

provides algorithms with polynomial complexity to maximize

fractional functions with a concave numerator and a convex

denominator [13]. However, even this robust tool fails when

multi-cell networks are considered, as interference makes the

numerator of energy efficiency non-concave. Consequently, the

majority of related work considers the single cell scenario

where inter-cell interference is inadequately neglected [14]–

[18]. In the following, we discuss existing approaches in

the field of energy efficient radio resource allocation, then

highlight the major contributions of our work.

A. Centralized Approaches

1) The single-cell case: Starting from the seminal work

in [14], the energy efficiency problem is proved to be quasi-

concave. Thus, a unique global optimal power allocation

always exists. Based on these findings, a plethora of work

has been developed as in [15]–[18]. In [15], the problem

is modeled as the maximization of energy efficiency under

QoS requirements: the data rate per user must be greater than

a given threshold. Both scheduling and power control are

studied on the downlink of a single cell OFDMA network.

The optimal solution is first given, then a low-complexity

suboptimal solution is developed by solving iteratively the

two problems at hand. In [16], a waterfilling-like solution is

proposed to the power allocation problem. Further, the work in

[17] integrates simultaneously spectral and energy efficiency

in the resource allocation objective. This enables to exploit the

latter tradeoff by balancing power consumption and occupied

bandwidth. In [18], proportional rate constraints are added

and a suboptimal two-step approach is adopted to solve the

scheduling and the power allocation problems.

The studies on energy efficiency have also typically dealt

with fairness between users. Since the efficiency of different

users cannot be maximized simultaneously, the work in [19]

investigates the use of individual energy efficiency rather than

overall efficiency. Similarly, the authors in [20] replace the

network energy efficiency by a max-min objective.

Recently, holistic approaches for energy efficiency have

been introduced. In [21], the authors take into account the

energy on the transmitter and the receiver side. Once again,

for tractability, the problem is suboptimally solved in two steps

where scheduling and power allocation are iteratively operated.

Both transmission sides are also considered in [22], focusing

on joint uplink and downlink resource allocation for energy

efficient carrier aggregation.

2) The multi-cell case: Energy efficiency have recently

been studied in the context of multi-cell wireless networks.

In [23], [24], the downlink of a multi-cell OFDMA system

is considered, wherein a cluster of coordinated BSs perform

energy efficient scheduling and power control under a per

sub-carrier power constraint. A heuristic method to solve

the first-order optimality conditions of this mixed integer

continuous problem is provided. However, a solution is only

proposed in the noise-limited regime, which boils down to the

single cell scenario. In [25], both centralized and distributed

approaches for energy efficient power control are explored.

Minimum-rate constraints are imposed to ensure fairness in

resource sharing. Optimal energy efficiency is reached in the

centralized approach with a reasonable complexity. Moreover,

convergence to NE is established in the distributed approach.

However, this is done solely in the single Resource Block (RB)

scenario. For the multiple RB scenario, simplified assumptions

are introduced to devise appropriate solutions.

In the state-of-the-art, various ways to achieve energy ef-

ficiency are introduced. For instance, energy efficiency can

be treated as a multi-objective optimization. In [26], a bi-

objective optimization problem is formulated for each BS,

which aims at both maximizing the BS throughput contribution

and minimizing its total power consumption. The authors

transform the bi-objective problem into an equivalent scalar

objective problem (via the so-called Pascoletti and Serafini

method). In [27], the authors assume that efficiency can be

simply achieved by minimizing the power consumption subject

to rate constraints. The work in [28] resorts to stochastic

geometry to obtain tractable analytical results for energy

efficient multi-cell networks. Nonetheless, power is set only in

the central BS, which hinders the benefits of multi-cell power

control.

B. Distributed Approaches

Distributed scheduling and power allocation for energy

efficiency in multi-cell OFDMA networks is the subject of

convergent research work [29]–[33]. In these papers, BSs are

enabled to determine autonomously the resource allocation

based on a local view of the network. The interaction between

selfish BSs is typically modeled using non-cooperative game

theory, and scientific effort is made to characterize attractive

solutions corresponding to NE.
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In this common framework, interference-limited scenarios

are considered in [29] and the existence of NE is proved.

However, the uniqueness of NE is established only when a

single sub-channel is used or when the channel experiences

flat fading. Pursuing the previous investigations, the work

in [30] sheds light on the dynamics of the spectral and

energy efficiency tradeoff. All users are assumed to experience

equal interference and channel gains. This simplified model

overlooks inter-cell interference despite its severe impact when

transmission is operated on multiple sub-channels. In [31],

iterative Best Response dynamics are used to reach the NE

but without proof of convergence. Further, the series of

modifications to the original problem and the decoupling of

scheduling and power control make the proposed solution

heuristic. In [32], discrete power levels are considered. A

suboptimal solution is proposed due to the NP-hardness of

the problem where power control and scheduling are again

addressed iteratively. The same approach is used in [33] where

the authors put forward a potential game for power control.

The context of cooperative networks is explored in [34]. In

such networks, transmit data can be aided by several relays.

The problem is formulated as a non-cooperative power control

game with discrete power levels. A Q-learning algorithm is

proposed to converge to the mixed NE of the finite game.

In [35], the power control on the uplink of heterogeneous

networks is investigated with an innovative approach that seeks

Debreu equilibrium.

C. Our Contributions

This work presents a joint approach for scheduling and

power control in wireless networks. The general contribution

consists in formulating and solving the energy efficient re-

source management problem in multi-cell OFDMA networks

using both centralized and distributed approaches. We summa-

rize in this section the major contributions and the differences

from existing work.

• Our formulation is tailored to multi-cell networks, con-

trary to a large part of research work, where only a single

OFDMA cell is considered [36], [15], [21], [22], [23],

[24]. Such approaches neglect the impact of inter-cell

interference, which appears as a major shortcoming when

allocating resources in a network with dense spectrum

reuse. To highlight the latter, we compare our algorithms

with the state-of-the-art single cell approaches. The re-

sults show the relevance of our realistic contributions

especially in high interference scenarios.

• In our work, we tackle the joint problem of scheduling

and power control in OFDMA-based wireless networks.

Our formulation enables to mathematically separate the

two problems without loosing optimality. To our knowl-

edge, the state-of-art work addresses scheduling and

power control iteratively leading to suboptimal results

[15], [18], [21], [23], [24], [31], [32].

• Our salient objective is to address the radio resource

allocation according to the two widely adopted points

of view in wireless networks: the centralized approach

where a global energy efficient scheduling and power

control is computed on a central controller. The dis-

tributed approach, modeled as a non-cooperative game,

where autonomous BSs selfishly maximize their energy

efficiency. Moreover, we provide numerical results that

assess the difference between the two approaches.

• We perform mathematical transformations on the cen-

tralized and distributed formulations in order to obtain

convex optimization problems. Particularly, we make use

of the Dinkelbach [13] method followed by a geometric

variable change. These transformations enable us to de-

vise efficient algorithmic solutions, based on the projected

subgradient [37].

• We prove mathematically that the centralized and dis-

tributed approaches converge to a global optimum, or

to pure Nash equilibrium, respectively. In particular, we

prove that the non-cooperative distributed game is super-

modular. Such games are known to converge to pure

Nash equilibrium by applying simple Best Response

dynamics. More importantly, we provide a formal proof

of the uniqueness of the equilibrium in low and high

interference scenarios. Using simulations means, we show

the rapid convergence of both approaches, which is a

precious asset for realistic deployments.

The work in [25] is the closest to our paper where both cen-

tralized and distributed approaches for energy efficient power

control are explored. However, the study does not encom-

pass the scheduling problem. To ensure fairness, minimum-

rate constraints are imposed, whereas we chose to apply

proportional fairness to realize equity in resource sharing.

More importantly, simplifying assumptions are introduced in

[25] to circumvent the analytical complexity of the multiple

RBs scenario. On the contrary, our work devises optimal

algorithmic solutions for the general problem that are valid

in the realistic multiple RB setting of an OFDMA network.

IV. THE NETWORK MODEL

We consider a cellular network comprising a set of BSs

denoted by J . We focus on the downlink in this paper

where OFDMA is used as the multiple access scheme. The

time and frequency radio resources are grouped into time-

frequency RBs, as for instance in LTE networks. An RB is the

smallest radio resource unit that can be scheduled to a mobile

user. Each RB consists of Ns OFDMA symbols in the time

dimension and Nf sub-carriers in the frequency dimension (in

LTE, Ns = 7 as in the most used formats and Nf = 12). The

set of RBs is denoted by K, and the set of users is denoted

by I. The notation used in this document is depicted in Table

I. In the sequel, we make the following assumptions:

1) we consider a fixed user to BS association and denote

by I(j) the set of users associated with BS j ∈ J . Each

user typically compares the received signal power from

each BS and chooses to connect with the best received

BS;

2) we consider saturation mode for downlink traffic where

each BS has persistent traffic towards its users. We also

assume that all RBs are assigned on the downlink at

each scheduling interval.
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TABLE I
SETS, PARAMETERS AND VARIABLES NOTATION

J Set of BSes.
I Total set of users.
I(j) Set of users associated to BS j.
K Set of RBs.
|.| Number of elements in a set.
πjk Transmit power of BS j on RB k.
θik Percentage of time user i is associated with RB k.

pmin Minimum power on each RB.
pmax
j Maximum power of BS j.

A. The Power Consumption Model

The transmit power of each BS is given to the resource

blocks serving the users in the cell. Assuming the utilization

of a power allocation algorithm, the total transmit power of

BS j is the sum of the transmit power on each of the RBs

k ∈ K, written as
∑

k∈K πjk, where πjk denotes the transmit

power of BS j on RB k. The power consumption of BS j ∈ J
is modeled as a linear function of the transmit power as below

[38]:

pj = p1j (
∑

k∈K

πjk) + p0j . (1)

The coefficient p1j accounts for the power consumption that

scales with the transmit power due to radio frequency amplifier

and feeder losses while p0j models the power consumed

independently of the transmit power due to signal processing

and site cooling.

In the following, we consider that the power on each RB is

larger than a predefined value denoted pmin, and the transmit

power of BS j is lower than pmax
j . In practice, these bounds

are related to hardware limitations. Further, this leads to a

more balanced power allocation on the different subcarriers,

allowing a simpler design of the transmit amplifiers. The total

power consumed in the network is given by the sum of the

power in each BS:

P =
∑

j∈J

pj =
∑

j∈J ,k∈K

p1jπjk +
∑

j∈J

p0j . (2)

B. The SINR model

Given a user i associated with BS j (i.e., i ∈ I(j)), the

SINR of this user when served on RB k is given by:

ρijk =
πjkGijk

N0 +
∑

j′ 6=j πj′kGij′k

, (3)

where Gijk is the channel power gain of user i on RB k of

BS j (e.g., computed as an average power gain over the sub-

carriers in the RB), and N0 is the noise power. The latter is

assumed, without loss of generality, to be the same for the

all users on all RBs. In our work, we rely on perfect channel

state information to infer the SINR. Authors in [39] provide

models to account for imperfect channel state and study the

impact on energy efficiency.

C. The Network Utility model

Let θik denote the percentage of time user i is scheduled

on RB k. The utility function of the network is defined by the

following:

R =
∑

j∈J ,i∈I(j)

∑

k∈K

log(θikρijk)

=
∑

j∈J ,i∈I(j),k∈K

log(
θikπjkGijk

N0 +
∑

j′ 6=j πj′kGij′k

), (4)

with 0 ≤ θik ≤ 1. Note that R also corresponds to the

logarithm of the geometric mean of SINR:

R = log(
∏

j∈J ,i∈I(j),k∈K

θikρijk) (5)

As introduced in [40], the logarithmic utility function is

intimately associated with the concept of proportional fairness.

Thus, the expression of R yields a proportional fair rate

service by each BS for users on each RB. This network utility

formulation is technology-agnostic. In the context of LTE

networks, the mapping between the SINR and the throughput

of each user can be derived according to the appropriate

modulation and coding scheme. Inevitably, improving this

network utility boils down to improving the user throughput.

V. CENTRALIZED FORMULATION OF THE ENERGY

EFFICIENCY PROBLEM

In this section, we introduce a centralized formulation of the

joint scheduling and power allocation problem in a multi-cell

network. The objective is to maximize the energy efficiency

expressed as the network utility per power unit. Accordingly,

we maximize the ratio of the network utility as given in (4) and

the total power consumption in all BSs. Our energy efficiency

objective represents a benefit-cost ratio as established in [39].

The benefit measures the income of the system as the amount

of data that can be transmitted to the receiver in a time interval

while ensuring proportional fairness. The cost is represented

by the total amount of energy consumed to run the system. The

centralized optimization problem is given in (6) and denoted

by (P) in the sequel.

(P) : max
θ,π

{

R(θ,π)

P (π)

}

=

max
θ,π

{
∑

j∈J ,i∈I(j),k∈K log(θikρijk)
∑

j∈J ,k∈K p1jπjk +
∑

j∈J p0j

}

(6a)

subject to
∑

k∈K

θik ≤ 1, ∀j ∈ J , ∀i ∈ I(j), (6b)

∑

k∈K

πjk ≤ pmax
j , ∀j ∈ J , (6c)

πjk ≥ pmin, ∀j ∈ J , ∀k ∈ K, (6d)

0 ≤ θik ≤ 1, ∀j ∈ J , ∀i ∈ I(j), ∀k ∈ K. (6e)

The objective function (6a) consists in maximizing the ratio

of the network utility, yielding a proportional fair service, and

the total power consumed in the network. The optimization

variables are πjk, ∀j ∈ J , ∀k ∈ K and θik, ∀i ∈ I(j), ∀k ∈ K,

also represented by a vector notation as θ and π. Constraints



0733-8716 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2016.2611847, IEEE Journal
on Selected Areas in Communications

5

(6b) ensure that a user shares its time on the available RBs.

Constraints (6c) ensure that the power consumption of each

BS j is lower than pmax
j . Constraints (6d) and (6e) define the

bounds on the optimization variables πjk and θik.

A. Decomposition of the Centralized Energy Efficiency Prob-

lem

The problem (P) in (6) cannot be solved in a straightforward

manner as it is non-convex. However, as it is a fractional

problem, it can be transformed into a parametrized convex

programming problem as follows [13]:

(P̂) :F (η) = max
θ,π
{R(θ,π)− ηP (π)} (7a)

subject to (6b), (6c), (6d), (6e). (7b)

where η is a non-negative parameter.

Let us denote by η∗ the maximum energy efficiency of the

original problem (P) in (6) which can be expressed as:

η∗ =
R(θ∗,π∗)

P (π∗)
= max

θ,π

{

R(θ,π)

P (π)

}

(8)

(P̂) achieves the maximum energy efficiency η∗ if and only

if:

F (η∗) = max
θ,π
{R(θ,π)− η∗P (π)}

= R(θ∗,π∗)− η∗P (π∗)

= 0

(9)

Dinkelbach [13] demonstrated that F (η) is continuous and

strictly monotonically decreasing in η, thus it has a unique

root η∗ that can be derived using an iterative algorithm, known

as the Dinkelbach method. Moreover, the optimal solution set

{θ∗,π∗} of (P) is the same as that of (P̂) with η = η∗.

Algorithm 1 Iterative Solution of the Energy Efficiency prob-

lem

Require: Maximum tolerance ǫ ≥ 0, iteration n ← 0, initial

value η0

1: repeat

2: η ← ηn

3: Solve (P̂) in (7)

4: (θn,πn)← argmax
θ,π

{R(θ,π)− ηP (π)}

5: Fn ← max
θ,π
{R(θ,π)− ηP (π)}

6: ηn+1 ← R(θn,πn)
P (πn)

7: n← n+ 1
8: until Fn ≤ ǫ

The proposed iterative procedure is summarized in Algo-

rithm (1) and the convergence to the optimal energy efficiency

is guaranteed if the inner problem (P̂) is solved to optimality

in each iteration in Line 3. The value of η is updated in Line

6 and the convergence is attained for Fn ≤ ǫ, with ǫ a given

maximum tolerance.

We note that the term R(θ,π) in the objective function of

(P̂) is a sum of functions in θ and π and can be written as:

R(θ,π) =
∑

j∈J ,i∈I(j),k∈K

log(θikρijk)

=
∑

j∈J ,i∈I(j),k∈K

log(θik) + log(ρijk)

= R1(θ) +R2(π)

(10)

As the constraints of (P̂) involve either θ or π separately,

therefore (P̂) is block separable into two optimization sub-

problems (P̂1) and (P̂2) given in (11) and (12) respectively.

Note that this decomposition preserves the optimality of the

solution [41].

(P̂1(θ)) : max
θ

{
∑

j∈J ,i∈I(j),k∈K

log(θik)} (11a)

subject to
∑

k∈K

θik ≤ 1, ∀i ∈ I(j), ∀j ∈ J , (11b)

0 ≤ θik ≤ 1, ∀j ∈ J , ∀i ∈ I(j), ∀k ∈ K. (11c)

(P̂2(π)) : max
π
{

∑

j∈J ,i∈I(j),k∈K

log(ρijk)

− η(
∑

j∈J ,k∈K

p1jπjk +
∑

j∈J

p0j )} (12a)

subject to
∑

k∈K

πjk ≤ pmax
j , ∀j ∈ J , (12b)

πjk ≥ pmin, ∀j ∈ J , ∀k ∈ K. (12c)

Similarly, (P̂1) can be decomposed into |J | per-cell schedul-

ing problems. Each problem, denoted (P̂1j) and given in (13),

computes the percentage of time user i is served on each RB

k in BS j. (P̂1j) for each BS j can be solved independently of

Algorithm (1). Further, (P̂2) is a multi-cell power allocation

algorithm and should be solved at each iteration of the Dinkel-

bach algorithm. Therefore, the following section deals with

these two sub-problems and provides algorithmic solutions.

(P̂1j(θ)) : max
θ

{
∑

i∈I(j),k∈K

log(θik)} (13a)

subject to
∑

k∈K

θik ≤ 1, ∀i ∈ I(j), (13b)

0 ≤ θik ≤ 1, ∀i ∈ I(j), ∀k ∈ K. (13c)

VI. SOLVING THE CENTRALIZED ENERGY EFFICIENCY

PROBLEM

As introduced in the previous section, the centralized op-

timization formulation can be decomposed into a per-cell

scheduling sub-problem and a multi-cell power control sub-

problem. This decomposition preserves the optimality and an

optimal solution of each sub-problem leads to a global one.

In this section, we introduce algorithmic methods that com-

pute optimal solutions for the scheduling and power control

problems, respectively.
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A. Solution of the Per-Cell Scheduling Problem

The per-cell scheduling problem (P̂1j) in (13) is a convex

optimization problem: the objective function (13a) is concave

(sum of concave functions) and all constraints are linear.

Theorem 6.1: The optimal solution of the per-cell scheduling

problem (P̂1j) for each BS j is given by:

∀i ∈ I(j), ∀k ∈ K, θ∗ik =
1

|K|
. (14)

Proof: See Appendix A. �

B. Solution of the Multi-Cell Power Control Problem

The multi-cell power control problem (P̂2) in (12) is a

non-linear, and apparently difficult, non-convex optimization

problem. However, it can be transformed into a convex op-

timization problem in the form of geometric programming;

hence it can be very efficiently solved for global optimality

even with a large number of users.

1) Convex transformation: In Appendix B, we demonstrate

that problem (P̂2) in (12) can be transformed into a convex

optimization via a change of variables π̃jk = log(πjk). We

obtain the following convex problem (P̂2(π̃)), written with

Ñ0 = log(N0) and G̃ijk = log(Gijk):

(P̂2(π̃)) : max
π̃

{
∑

j∈J ,i∈I(j),k∈K

(π̃jk + G̃ij′k)

−
∑

j∈J ,i∈I(j),k∈K

log(exp(Ñ0)

− η(
∑

j∈J ,k∈K

p1j exp(π̃jk) +
∑

j∈J

p0j )}

(15a)

subject to

log(
∑

k∈K

exp(π̃jk))− log(pmax
j ) ≤ 0,∀j ∈ J , (15b)

− π̃jk + log(pmin) ≤ 0, ∀j ∈ J , ∀k ∈ K. (15c)

2) Projected subgradient-based algorithm: In order to

solve the convex problem (P̂2(π̃)) in a centralized fashion, we

can have recourse to the subgradient method for constrained

optimization. This algorithm takes the following form:

π̃jk(t+ 1) = π̃jk(t) + δ(t)g̃(t),

where t is the iteration number, δ(t) a step size, and g̃(t) a

subgradient of the objective function in (15a). We take:

g̃(t) = ∇π̃jk
(R2(π̃)− ηP (π̃)) (16)

In order to express the subgradient in (16), let us start by

computing the derivative of the objective function in (15a)

with respect to π̃jk:

∇π̃jk
(R2(π̃)− ηP (π̃))

= |I(j)| −
∑

l∈J
l 6=j

∑

i∈I(l)

Gijk exp(π̃jk)
∑

j′∈J
j′ 6=l

exp(π̃j′k)Gij′k +N0

− ηp1j exp(π̃jk)

= |I(j)| − πjk

∑

l∈J
l 6=j

∑

i∈I(l)

Gijk
∑

j′∈J
j′ 6=l

πj′kGij′k +N0
− ηp1jπjk

Coming back to the solution space in π instead of π̃, the

derivative of the objective function in (12a) with respect to

πjk is given by:

∇πjk
(R2(π)− ηP (π))

= ∇πjk
(

∑

j∈J ,i∈I(j),k∈K

log(ρijk)

− η(
∑

j∈J ,k∈K

p1jπjk +
∑

j∈J

p0j ))

=
|I(j)|

πjk

−
∑

l∈J
l 6=j

∑

i∈I(l)

Gijk
∑

j′∈J
j′ 6=l

πj′kGij′k +N0
− ηp1j

We note that ∇πjk
(R2(π)−ηP (π)) = (1/πjk)∇π̃jk

(R2(π̃)−
ηP (π̃)) and the logarithmic change scales the gradient by πjk.

Thus, the gradient iterations can be conducted in either π or

π̃ domain, and we can write:

πjk(t+ 1) = πjk(t) + δ(t)g(t),

where,

g(t) = ∇πjk
(R2(π)− ηP (π)).

For the solution space in π, the feasible set of power

allocations is a simplex defined by constraints (12b) and

(12c). The projection of the subgradient on the simplex is

straightforward and performed according to the algorithm in

[42]. The convergence of the gradient-based optimization is

guaranteed and proved in [43].

Note that the subgradient method can be implemented in a

semi-distributed way by harnessing the X2 interface. In fact,

we can write:

g(t) =
|I(j)|

πjk(t)
− ηp1j −

∑

l∈J
l 6=j

∑

i∈I(l)

Gijk
∑

j′∈J
j′ 6=l

πj′k(t)Gij′k +N0
.

Simplifying the equation and using the definition of the SINR

ρijk given in (3), we obtain:

g(t) =
|I(j)|

πjk(t)
− ηp1j −

∑

l∈J
l 6=j

∑

i∈I(l)

Gijk

ρilk(t)

Gilkπlk(t)
. (17)

For BS j, the last term in equation (17) contains the opposite

of the SINR of RB k experienced by other BSs, which is

unknown to BS j. Hence, at each iteration, any BS l ∈ J
must convey to its neighbors through the X2 interface a vector

containing the experienced SINR on all RBs, normalized by

Gilkπlk.
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C. Centralized Algorithmic Solution for the Energy Efficiency

Problem

Algorithm 2 details the computation process for solving the

energy efficiency problem. The algorithm starts by computing

the optimal solution of the per-cell scheduling introduced in

Section VI-A (Line 1). Then, given an initial power allocation

on RBs, the algorithm iteratively proceeds in order to solve

the multi-cell power control problem.

Algorithm 2 Centralized Algorithm of the Energy Efficiency

Problem

Require: J , I(j),K, Gijk

Require: Maximum tolerance ǫ ≥ 0, iteration n ← 0, initial

value η0

1: ∀i ∈ I(j), ∀k ∈ K, θ∗ik = 1
|K| ⊲ Optimal scheduling

2: πjk(0)← pmin, ∀j ∈ J , ∀k ∈ K
3: repeat

4: η ← ηn

5: Iteration t← 0
6: repeat ⊲ Solve (P̂2(π)) in (12)

7: for j ∈ J do

8: for k ∈ K do

9: πjk(t+ 1)← πjk(t) + δ(t)( |I(j)|
πjk(t)

− ηp1j

−
∑

l∈J
l 6=j

∑

i∈I(l)(Gijk
ρilk(t)

Gilkπlk(t)
))

10: πp
jk(t+ 1)← Projection(πjk(t+ 1))

11: end for

12: end for

13: t← t+ 1
14: until |πp(t+ 1)− π

p(t)| ≤ ǫ
15: π

n ← π
p(t+ 1)

16: θ
n ← θ

∗

17: Fn ← R(πn,θn)− ηP (πn)

18: ηn+1 ← R(πn,θn)
P (πn)

19: n← n+ 1
20: πjk(0)← πn

jk, ∀j ∈ J , ∀k ∈ K
21: until Fn ≤ ǫ

In each iteration of the Dinkelbach method, the projected

subgradient is applied on the RBs in all BSs (Lines 7-12).

The subgradient iterations are performed in π domain and

the projection on the simplex (Line 10) is done according to

the algorithm in [42]. The multi-cell power control problem

converges when the variation in the power allocation between

two successive iterations is less than a predefined maxi-

mum tolerance (Line 14). In practice, for realistic scenarios

considered in section IX devoted for numerical results, the

convergence of the projected subgradient is attained in a

reasonable number of iterations. In Line 17, a new value of

the objective function for the energy efficiency problem is

computed. Then, a new Dinkelbach parameter is deduced (Line

18) and the iterations are repeated. The Dinkelbach method

is guaranteed to converge to the optimal energy efficiency

since the inner problem is solved to optimality. For realistic

scenarios considered in section IX, the convergence of the

Dinkelbach method is attained in a relatively small number of

iterations.

VII. DISTRIBUTED FORMULATION OF THE ENERGY

EFFICIENCY PROBLEM

In this section, we devise a distributed joint scheduling and

power control approach where BSs maximize their energy

efficiency autonomously. Non-Cooperative game theory mod-

els the interactions between players competing for common

resources. Here, BSs are the decision makers or players of

the game that seek selfishly to maximize their own energy

efficiency. BSs are assumed to make their decisions without

knowing the decisions of each other.

A. The Game Formulation

We define a multi-player game G between the BSs. The

formulation of this non-cooperative game G = 〈J , S, U〉 can

be described as follows:

• A finite set of BSs J ;

• An action of BS j is the amount of power πjk allocated

on RB k, the strategy chosen by BS j is then πj =
(πj1, ..., πj|K|). A strategy profile π = (π1, ...,π|J |)
specifies the strategies of all players;

• For each BS j, the space of pure strategies is Sj given

by what follows:

Sj = {πj ∈ R
|K|, such as

∑

k∈K

πjk ≤ pmax
j and

πjk ≥ pmin, ∀k ∈ K}

and S = S1 × ...× S|J | is the set of all strategies;

• A set of objective functions U that quantify players’

objective for a given strategy profile π. We denote U =
(U1(π), U2(π), ..., U|J |(π)), where Uj is the objective

function of any BS j.

As BSs seek selfishly to maximize their energy efficiency, we

define the objective of BS j as the ratio between its utility and

its power consumption, which is given by:

Uj(πj ,π−j) =

∑

k∈K,i∈I(j) log(
θ∗
ikπjkGjk

N0+
∑

j′ 6=j
πj′kGij′k

)
∑

k∈K p1jπjk + p0j
, (18)

where π−j denotes the vector of strategies played by all BSs

except BS j. Note that θ∗ is the optimal solution of the per-cell

scheduling problem that is computed beforehand according to

Theorem 6.1.

B. The Game Properties

In a non-cooperative game, an efficient solution is obtained

when all players adhere to a NE. A NE is a profile of strategies

in which no player will profit from deviating its strategy

unilaterally. Hence, it is a strategy profile where each player’s

strategy is an optimal response to the other players’ strategies.

Uj(πj ,π−j) ≤ Uj(π
′
j ,π−j), ∀j ∈ J , ∀π

′
j ∈ Sj . (19)

According to the work in [44], a NE exists for our game be-

cause Uj(πj ,π−j) is a quasi-concave function in πj (it is the

ratio of two concave functions) and is continuous in π−j . A

NE is a static concept that often abstracts away the question of

how it is reached. Thus, the main challenge in non-cooperative
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game theory is to devise practical algorithms to reach those

equilibriums. The simplest example of such algorithms are

repeated Best Response dynamics: each player selects the

best (locally optimal) response to other players’ strategies,

until convergence. However, convergence of repeated Best

Response is not guaranteed in general. In this work, we are in

presence of a type of games called super-modular games where

a greedy Best Response algorithm permits attaining NEs.

In the following, we introduce a formal definition of super-

modular games and prove that our distributed joint scheduling

and power control game G belongs to the latter class.

According to [45], G is super-modular if for any BS j ∈ J :

1) the strategy space Sj is a compact sub-lattice of R|K|;

2) the objective function Uj is super-modular, that is
∂Uj

∂πl∂πj
≥ 0, ∀l ∈ J − {j}, ∀πj ∈ Sj , and ∀k ∈ K.

In [45], [46], proof is given for the following two results in a

super-modular game:

• if each BS j either initially uses its lowest or largest

policy in Sj , then a Best Response algorithm converges

monotonically to a NE (that may depend on the initial

state);

• if we start with a feasible policy, then the sequence

of best responses monotonically converges to a NE: it

monotonically increases in all components in the case of

maximization in a super-modular game.

Proposition 7.1: Game G is a super-modular game.

Proof: To prove the super-modularity of the game, we need

to verify the aforementioned conditions. First, the strategy

space Sj is obviously a compact convex set of R|K|. Hence, it

suffices to verify the super-modularity of the objective function

of any BS j as there are no constraint policies for G:

∂Uj

∂πlk∂πjk

=

p1j
(
∑

k∈K p1jπjk + p0j )
2
× (

∑

i∈I(j)

Gilk

N0 +
∑

j′ 6=j πj′kGij′k

) ≥ 0,

∀l ∈ J − {j},∀k ∈ K.

�

VIII. SOLVING THE DISTRIBUTED ENERGY EFFICIENCY

PROBLEM

Following the formulation of the distributed energy effi-

ciency problem, we focus in this section on the algorithmic

solutions. As for the centralized formulation, we make use

of the Dinkelbach method associated with a projected sub-

gradient. We also provide the formal proof for two valuable

properties of the non-cooperative game at hand, namely the

existence and the uniqueness of the NE.

A. Computing the NE

As we proved that we are in presence of a super-modular

game, we implement a Best Response algorithm to reach its

pure NEs. Accordingly, at each iteration t, BS j strives to find

the following optimal power level as a response to π−j(t−1):

π
∗
j (t) = argmax

πj

Uj(πj ,π−j), subject to: πj ∈ Sj , (20)

which amounts to the following optimization problem:

max
πj

Uj(πj ,π−j) (21a)

subject to
∑

k∈K

πjk ≤ pmax
j , (21b)

πjk ≥ pmin, ∀k ∈ K. (21c)

1) Projected subgradient-based algorithm: Problem (21)

cannot be solved in a straightforward manner as it is non-

convex. However, as it is a fractional problem, an optimal

solution is obtained by iteratively solving the parametrized

convex problem (22), according to the Dinkelbach method

[13].

(P̂3(π)) : max
πj

Fj(ηj) =

∑

k∈K,i∈I(j)

log(
θ∗ikπjkGijk

N0 +
∑

j′ 6=j πj′kGij′k

)

− ηj(
∑

k∈K

p1jπjk + p0j ) (22a)

subject to
∑

k∈K

πjk ≤ pmax
j , (22b)

πjk ≥ pmin, ∀k ∈ K. (22c)

We may intuitively take ηj as the price of the total system

power of BS j which results in maxFj = 0 at the optimal

value of ηj . The Dinkelbach method produces a decreasing

sequence of ηj values, which converges to the optimal value at

a super-linear convergence rate. The convergence is guaranteed

if the inner problem (22) is solved to optimality.

In order to solve problem (P̂3(π)) for each BS j ∈ J ,

we start by transforming it into a convex optimization via

a change of variables π̃jk = log(πjk). Similarly to the

computations in Section VI-B2, we can have recourse to the

subgradient method for constrained optimization and solve it

in a distributed way. This algorithm takes the form:

π̃jk(t+ 1) = π̃jk(t) + δ(t)g̃(t),

where t is the iteration number, δ(t) a step size, and g̃(t) a

subgradient of the objective function of problem (P̂3(π)):

g̃(t) = ∇π̃jk
Fj(ηj) = |I(j)| − ηjp

1
jπjk(t).

Coming back to the solution space in π instead of π̃, the

derivative of the objective function in (22a) with respect to

πjk is given by:

g(t) = ∇πjk
Fj(ηj) =

|I(j)|

πjk(t)
− ηjp

1
j .

We note that g(t) = g̃(t)/πjk and the logarithmic change

scales the gradient by πjk. Thus, the gradient iterations can

be conducted in either π or π̃ domain, and we can write:

πjk(t+ 1) = πjk(t) + δ(t)g(t).

Once again, the feasible set of power allocations is a simplex

and the projection of the subgradient is straightforward and

performed according to the algorithm in [42].



0733-8716 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2016.2611847, IEEE Journal
on Selected Areas in Communications

9

2) The power expression at equilibrium: The optimum π
∗

of the convex problem (22) must satisfy the Karush-Kuhn-

Tucker (KKT) conditions, i.e., there exists a unique Lagrange

multiplier β ≥ 0 such that:

∇πjk
(Fj(ηj)) + β∇πjk

(fj(πj)) = 0, ∀k ∈ K, (23a)

βfj(πj) = 0, (23b)

πjk ≥ pmin, ∀k ∈ K, (23c)

where fj(πj) = pmax
j −

∑

k∈K πjk. Thus, according to (23a),

the power allocation is given by:

πjk =
|I(j)|

p1jηj + β
, ∀k ∈ K. (24)

Note that all power levels for a given BS j are equal at

equilibrium. Finally, to obtain the power levels that are sought

for, we have recourse to (23b): if β > 0,
∑

k∈K πjk = pmax
j

at optimality and hence, by virtue of the equality among

the power components, we have πjk = pmax
j /|K|, ∀k ∈ K.

Otherwise, if β = 0, πjk = |I(j)| /(ηjp
1
j ), ∀k ∈ K. Hence,

we deduce the following:

πjk(t) = min(
|I(j)|

p1jηj(t)
,
pmax
j

|K|
), ∀k ∈ K, ∀j ∈ J . (25)

B. Uniqueness of the NE

The goal of the present section is to find under what

conditions the game G converges to a unique NE, which is a

valuable result. In fact, one of the difficulties that has limited

the usefulness of the concept of NE in non-cooperative game

theory is the lack of uniqueness of such equilibriums. In fact,

the majority of games possess a plethora of NEs as shown in

[47].

Assume that the game G admits two distinct NE points,

denoted by π
(r)
j where r ∈ R = {0, 1} for any BS j which are

optimum points of the optimization problem (22) and hence

satisfy the KKT conditions in (23). Moreover, as the functions

fj(π
(r)
j ) are (linear) convex, we have for each π

(r)
j :

fj(p)− fj(π
(r)
j ) ≥ (p− π

(r)
j )∇π̃jk

(fj(π
(r)
j )),

∀k ∈ K, ∀j ∈ J , (26)

where p = π
(1)
j resp. (π

(0)
j ) for r = 0 (resp. r = 1).

Multiplying the equation in (23a) by (π
(0)
jk − π

(1)
jk ) for r = 0

and by (π
(1)
jk − π

(0)
jk ) for r = 1, ∀k ∈ K, and summing over

r, we obtain ∀j ∈ J :

0 = (π
(1)
jk − π

(0)
jk )∇πjk

(fj(π
(0)
j ))

+ (π
(0)
jk − π

(1)
jk )∇πjk

(fj(π
(1)
j ))

+ β(0)(π
(1)
jk − π

(0)
jk )∇πjk

(fj(π
(0)
j ))

+ β(1)(π
(0)
jk − π

(1)
jk )∇πjk

(fj(π
(1)
j )). (27)

The last two expressions in (27) are upper bounded by:

β(0)(fj(π
(1)
j )− fj(π

(0)
j )) + β(1)(fj(π

(0)
j )− fj(π

(1)
j )). (28)

As β(r)fj(π
(r)
j ) = 0, (28) is equivalent to:

β(0)fj(π
(1)
j ) + β(1)fj(π

(0)
j ). (29)

We can induce the uniqueness of the NE in two scenarios

∀r ∈ R, ∀j ∈ J :

• when the sum of allocated power to RBs is maximal i.e.,

fj(π
(r)
j ) = 0, deemed the high interference case;

• and in the converse scenario when the sum of allocated

power to RBs does not reach pmax
j i.e., β(r) = 0, deemed

the low interference case.

In both cases, the expression in (29) is null, which leads to

the following:

(π
(1)
jk − π

(0)
jk )(∇πjk

(fj(π
(0)
j ))−∇πjk

(fj(π
(1)
j ))) ≥ 0,

∀k ∈ K. (30)

In particular, for the high interference case, fj(π
(r)
j ) = 0 leads

to π
(r)
jk = pmax

j /|K|, ∀r ∈ R, ∀j ∈ J , which is obviously a

unique NE. For the low interference case, we resort to (30)

which re-writes as follows:

(π
(1)
jk − π

(0)
jk )(

1

π
(0)
jk

− η
(0)
j p1j −

1

π
(1)
jk

+ η
(1)
j p1j ) =

(π
(1)
jk − π

(0)
jk )2(1− |I|)

π
(0)
jk π

(1)
jk

≤ 0,∀k ∈ K. (31)

Thus, (30) or equivalently (31) can only equate to zero.

Consequently π
(1)
jk = π

(0)
jk , ∀k ∈ K, ∀j ∈ J .

C. Distributed Algorithmic Solution of the Energy Efficiency

Problem

Algorithm 3 details the computation process for solving

the energy efficiency problem in a distributed manner. The

algorithm starts by computing the optimal solution of the

per-cell scheduling policy introduced in Section VI-A (Line

1). Then, given an initial power allocation on RBs, the Best

Response algorithm proceeds in rounds until convergence to a

NE (Line 23). The results shown in Section IX reveal that a NE

is attained in a small number of rounds. Each round consists of

performing power allocation successively on all BSs in the net-

work. When dealing with BS j, the optimal power allocation

is computed by the Dinkelbach method (Lines 5-21). In each

iteration of the Dinkelbach method, the projected subgradient

is applied on the RBs of BS j (Line 8-14). The power control

problem converges when the variation in the power allocation

between two successive iterations is less than a predefined

maximal tolerance (Line 14). In Line 17, a new value of the

objective function of the energy efficiency problem for BS j
is computed. Then, a new Dinkelbach parameter is deduced

(Line 18) and the iterations are repeated. For realistic scenarios

considered in Section IX, the convergence of the Dinkelbach

method is attained in a small number of iterations.

IX. NUMERICAL RESULTS

We consider an LTE network of seven hexagonal cells and

10 users uniformly distributed per BS. The inter-BS distance

equals 500 m as in an urban environment. The system band-

width equals 3 MHz and 15 RBs are available for each BS.

Channels are generated using the publicly-available MATLAB
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Algorithm 3 Distributed solution for the energy efficiency

problem

Require: J , I(j),K, Gijk

Require: Maximum tolerance ǫ ≥ 0, iteration n← 0, η0

1: ∀i ∈ I(j), ∀k ∈ K, θ∗ik = 1
|K| ⊲ Optimal scheduling

2: πjk(0)← pmin, ∀j ∈ J , ∀k ∈ K
3: repeat

4: for j ∈ J do

5: repeat

6: ηj ← ηnj
7: Step t← 0
8: repeat ⊲ Solve (P̂2(π)) in (12)

9: for k ∈ K do

10: πjk(t+ 1)← πjk(t)

+ δ(t)( |I(j)|
πjk(t)

− ηjp
1
j )

11: πp
jk(t+ 1)← Projection(πjk(t+ 1))

12: end for

13: t← t+ 1
14: until |πp

j (t+ 1)− π
p
j (t)| ≤ ǫ

15: π
n
j ← π

p
j (t+ 1)

16: θ
n
j ← θ

∗
j

17: Fn
j ← R(πn

j ,θ
n
j )− ηjP (πn

j )

18: ηn+1
j ←

R(πn
j ,θ

n
j )

P (πn
j
)

19: n← n+ 1
20: πjk(0)← πn

jk, ∀j ∈ J , ∀k ∈ K
21: until Fn

j ≤ ǫ
22: end for

23: until |πp(t+ 1)− π
p(t)| ≤ ǫ

implementation of the WINNER Phase II Channel Model [48].

The shadow fading map follows a lognormal-distributed 2D

space-correlated, as in [49]: the Gaussian random variable has

a zero mean and a standard deviation of 10 dB. We consider

the following numerical parameters related to the power of

each BS j ∈ J [38]:

• The transmit power scaling coefficient p1j introduced in

(1) equals 4.7.

• The transmit power independent coefficient p0j equals

130.

• The maximal power consumption pmax
j equals 20 W (or

equivalently 43 dBm).

• The minimum power on each RB pmin equals 0.1 W.

Numerical results are obtained for 30 runs of each algorithm.

Users are generated according to a random uniform distri-

bution (leading to moderate interference), except in Sections

IX-C1 and IX-C2 dedicated to high and low interference

scenarios. In these sections, the distance between users and the

associated BS follows a Gaussian distribution with a standard

deviation of 75 m, centered at the BS for the low interference

scenario or at 100 m for the high interference scenario.

A. Centralized and Distributed Approaches

The following results allow us to compare the centralized

and the distributed approaches of the energy efficiency prob-

lem. Recall that the centralized approach is solved using a pro-

jected subgradient algorithm, while the distributed approach,

formulated as a super-modular game, is solved using a Best

Response algorithm. Both approaches make use of the per-

cell scheduling given in Theorem 6.1. Energy efficiency is

computed according to the objective function in (6a).
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Fig. 1. Energy efficiency of the centralized and distributed approaches

In Fig. 1, we represent a boxplot of the energy efficiency for

the centralized (Central-EE) and distributed (Distributed-EE)

approaches. On each boxplot, the central mark is the median,

the edges of the box are the 25th and 75th percentiles, the

whiskers extend to the most extreme data points which are

not considered outliers, and outliers are plotted individually.

In our work, the energy efficiency is computed as the ratio

between a unitless network utility (sum of logarithms of

SINRs) and a total power consumption in Joule. Therefore,

the energy efficiency is expressed in J−1 units. We note that

the centralized approach achieves higher energy efficiency as

expected. Precisely, the comparison criterion corresponds to

the objective of the optimization problem. Thus, the computed

solution corresponds to the highest achievable value. In the

distributed approach, each BS strives to maximize its own

energy efficiency. However, this selfish behavior does not lead

to maximizing the sum of the energy efficiency as with the

optimal centralized approach. This is commonly known as the

price of anarchy [50].

In Fig. 2(a), we plot the power distribution on all RBs in the

network, and in Fig. 2(b), we portray the SINR distribution.

For the former, we note that the optimal power distribution

computed by the centralized approach has a median value of

0.1 and a very small standard deviation. However, the optimal

power computed by the distributed approach has a median

value of approximatively 1.0 and a larger standard deviation.

In fact, the centralized approach allocates the minimum power

on each RB: this ensures low interference, low power con-

sumption, and achieves the highest energy efficiency given by

the ratio of total SINR and total power consumption; whereas

in the distributed approach, the BSs allocate higher power

on RBs in order to selfishly increase their energy efficiency

neglecting the harmful impact of interference on neighboring

cells. Note that the power consumption in the denominator of

the objective function of each BS prevents from allocating the

maximal power on each RB in the distributed approach.
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Fig. 2. Power and SINR distribution of the centralized and distributed
approaches

The power distribution becomes more significant when

coupled with the SINR distribution in Fig. 2(b). Precisely, the

centralized and distributed approaches provide similar SINR

for the users in the network. The median value is close to

25 dB and the percentiles between 0 dB and 50 dB. This

simulation results reveals the importance of the centralized

approach that avoids unnecessary power consumption without

jeopardizing the SINR of serviced users.

The bag plots in Fig. 3 are used to assess the power allocated

to RBs as a function of the SINR obtained by end-users.

Bagplots are equivalent of boxplots in two dimensions [51].

The bag of the centralized approach (in dark blue) is thinner

than that of the distributed approach: this means that the power

spread is smaller, whereas the SINR spread is equivalent in

both scenarios. Furthermore, the bag slopes downward for

the distributed approach. We deduce that we have negative

correlation, i.e., high power values lead to a deterioration of the

SINR values. In fact, when selfish BSs increase inconsiderably

power to improve their energy efficiency, the achieved SINR

is relatively low. This downside is avoided in the centralized

approach as the latter operates while considering the interfer-

ence impact. We also notice that the SINR-Power bag plot

for the centralized approach is very skewed as the median

(marked by a cross label) lies in the left part of the bag. By

contrast, the bag plot of the distributed approach is nicely

balanced and its form suggests an elliptic distribution. Finally,

both distributions are medium-tailed, judging from the size of

the loop (in light blue) and the low number of outliers (points

outside of the loop).
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Fig. 3. SINR-Power bagplot of the centralized and distributed approaches

B. Comparison with State-of-the-Art Approaches

The following results enable to assess the performances of

the approaches introduced in this work compared to the state-

of-the-art. We consider four benchmark schemes:

1) Central-SE that maximizes the sum of the log of the

SINR without taking into account the power consump-

tion.

2) MaxPower where power on each RB is equal to the

maximum sector power divided by the number of RBs.

3) NoInterference-EE that maximizes the energy efficiency

and neglects the inter-cell interference.
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Fig. 4. Comparison of the centralized and distributed approaches with various
heuristics

4) Iterative-EE, an adaption of the work in [24], that is

detailed hereafter.

Iterative-EE is a joint approach where scheduling and power

allocation are performed iteratively. In each iteration, the

algorithm computes an optimal scheduling solution where

each RB is allocated to the user with the highest SINR.

Then, taking the optimal schedule, the algorithm computes a

power allocation on RBs that maximizes the network energy

efficiency. For the sake of comparison and scientific rigor,

we consider the same energy efficiency objective function as

in Central-EE (12a). Authors in [24] prove that the iterative

algorithm converges toward a global optimal solution of the

joint scheduling and power control problem.

Note that the per-cell scheduling for Central-SE, MaxPower,

and NoInterference-EE is performed according to the optimal

solution given in Theorem 6.1. Such scheduling contributes in

achieving a proportional fair resource allocation. In contrast,

scheduling in Iterative-EE tends to favor users with good radio

conditions. As it is shown in the sequel, the dissimilarity

between the scheduling paradigms has a significant impact on

the performance results.

Let us start by analyzing the energy efficiency of the various

approaches in Fig. 4(a) supported by the power distribution in

Fig. 4(b). Considering the median values of energy efficiency

for the diverse approaches, we see as expected that the optimal

centralized approach surpasses all the others. We notice that

the broadly adopted Max-Power has bad performance because

of unduly power consumption. As for the NoInterference-EE

approach, we note that it has relatively good performance. In

fact, as the latter is oblivious to interference, it tends to lower

power in order to increase the objective function. Precisely,

as we are in presence of a moderate interference scenario, the

Central-EE behaves similarly but has more stringent limit on

power as it takes interference into account. This behavior is

further highlighted in pertinent scenarios with high and low

interference presented in the following section. The distributed

approach has relatively low performance owing to its propen-

sity to power consumption as already pinpointed. Regarding

the Central-SE approach, the achieved energy efficiency is

low and the power distribution has a median value close to

1.0 W. Precisely, power allocation in Central-SE is driven

by interference minimization (in order to increase spectral

efficiency) and not by power consumption reduction. Finally,

we note that Iterative-EE achieves the worst performance in

terms of energy efficiency despite its low power consumption.

Particularly, the scheduling policy applied in Iterative-EE is

biased against users with bad radio conditions. Such unfairness

in the scheduling scheme reduces the logarithmic network

utility computed as in (4), and consequently lowers the energy

efficiency. In contrast, our optimal per-cell scheduling scheme

jointly applied with the other approaches achieves proportional

fairness and leads to higher energy efficiency values.
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Fig. 5. SINR-Power bagplot of Central-SE

The bag plot in Fig. 5 enables to get more insights on the

performance of Central-SE. The median SINR value (marked
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by a cross label) is very close to that of the Central-EE and

Distributed-EE presented in Fig. 3. The bag spread (in dark

blue) is larger in terms of power allocation and it slopes

upward. This reveals a positive correlation where high power

values correspond to high SINR values. Moreover, upper right

side of the loop (in light blue) is higher than that of the

other approaches. Central-SE achieves higher SINR for a small

number of users at the expense of lower energy efficiency.
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Fig. 6. Energy efficiency and power allocation in low interference scenario

C. High Interference and Low Interference Scenarios

In this section, we consider pertinent scenarios of high and

low interference in order to obtain more insights on the devised

approaches.

1) Low interference: In the low interference scenario

sketched in Fig. 6(a), the energy efficiency of Central-EE,

Distributed-EE, Central-SE, Max-Power, and NoInterference-

EE approaches is increased. In presence of low interference,

these methods achieve higher SINRs for each consumed

power unit, compared with the moderate interference scenario.

Therefore, the ratio (i.e., energy efficiency) is increased while

the allocated power is reduced (except for Max-Power where

the power is obviously constant). As shown in Fig. 6(b), the

percentiles of power distribution are now equal to the median

value of 0.1 W for the centralized approach. Moreover, the

median power value of the distributed approach equals 0.5 W

compared to 1.0 W in case of moderate interference.

Contrary to the above-cited approaches, the energy effi-

ciency of Iterative-EE does not increase compared with the

moderate interference scenario. It has a median value close

to 1 as show in Fig. 6(a). In fact, the scheduling policy

implemented by Iterative-EE is biased against users with bad

radio conditions. Yet, these users benefit most from the low

interference scenario to increase their SINR. Consequently,

the unfair scheduling used with Iterative-EE prevents it from

increasing its energy efficiency in the scenario at hand. On

the opposite, the scheduling applied with the remaining ap-

proaches follows a proportional fair resource allocation policy.

Such a fair scheduling enables these approaches to take

benefit from the SINR improvement of users with bad radio

conditions. This enforces the increase in the energy efficiency

of Central-EE, Distributed-EE, Central-SE, Max-Power, and

NoInterference-EE as analyzed above.

2) High interference: For the same reasons explained

above, the energy efficiency of the compared approaches is

decreased in high interference scenario. In fact, the power

allocation is increased on all RBs in order to achieve higher

SINRs and counterbalances the impact of more noxious inter-

ference. As portrayed in Fig. 7(a), we notice smaller discrep-

ancy between the energy efficiency of the diverse approaches.

Here, Iterative-EE has the highest median value owing to a

scheduling policy that favors users with good radio conditions.

As such users are less impacted by the interference escalation,

Iterative-EE outranks the remaining approaches and shows

the best energy efficiency in harsh interference conditions.

Moreover, the Max-Power performances are acceptable in

such a case and this simplistic method can be useful in

high interference scenarios. In Fig. 7(b), we note that the

allocated power is higher for the diverse approaches compared

to the moderate interference scenario. The median value of the

centralized approach is increased and the distributed approach

always allocates the maximum power value on all RBs. Here

again, the latter shows high power consumption driven by

selfish behavior of the BSs.

D. Convergence Rate

In the following, we assess the convergence rate of the

algorithm for solving the centralized approach in a moderate

interference scenario. In Fig. 8(a), we show the power on each

RB as a function of the number of subgradient iterations,

and in dotted vertical lines the Dinkelbach iterations. The

algorithm starts with an initial value of the parameter η0 = 2
and a power value of pmin on all RBs. The subgradient updates
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Fig. 7. Energy efficiency and power allocation in high interference scenario

increase the power until a fast convergence in around 20 steps.

In our computation, the constant step size parameter δ equals

10−3 and the convergence threshold ǫ equals 10−4. Then, the

algorithm computes a new value of the η parameter and runs

the projected subgradient-based algorithm. We note that the

number of Dinkelbach iterations equals 3 with a decreasing

number of subgradient iterations.

In Fig. 8(b), we plot the power on each RB as a function of

the number of BS power updates in the distributed approach.

These updates are performed when solving the optimization

problem (22) successively for each BS. The vertical dotted

lines show the completion of power updates on all BSs,

i.e., the Best Response round. We note that for a given BS,

the computed power is the same on all RBs as proven in

Section VIII-A2. Starting from the minimal power value on
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Fig. 8. Power updates for the centralized and distributed approaches

all RBs, the BSs perform in turns local Dinkelbach procedures

with subgradient iterations following Algorithm 3 and increase

monotonically the allocated power. Similarly to the centralized

approach, the constant step size parameter δ equals 10−3 and

the convergence threshold ǫ equals 10−4. In this example, the

Best Response algorithm converges in only eight rounds.

In Fig. 9, we show the energy efficiency objective of each

BS as a function of the number of BS power updates. As noted

in Fig. 8(b), the NE is reached in only eight rounds, shown

with vertical dotted lines. Solely in the first round, the energy

efficiency exhibits large variations for each BS. This is due to

the fact that all BSs start with a minimal power allocation on

each RB. Interestingly, these variations diminish considerably

starting from the second round until reaching the equilibrium.

In Fig. 10, we plot the distribution of the number of Best

Response rounds until convergence for 30 simulation runs. The

median value equals 7 and the maximum value equals 8. In the

following discussion section, we stress on the fast convergence

of the Best Response algorithm, which is a real asset of a

distributed approach.
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We display in Fig. 11 the total computation time1 of

the centralized and distributed approaches. Both approaches

have very fast computation time with median sub-second

values. This computation time is compatible with a real

implementation of the algorithms: the scheduling decision is

precomputed and implemented at the BS level, whereas the

power allocation is rapidly computed following any change in

the radio conditions. This important issue is further discussed

in the following section.

X. DISCUSSION ON IMPLEMENTATION FEASIBILITY

After assessing the performance of the centralized and

distributed approaches in the previous sections, we outline

hereafter some practical guidelines to implement the proposed

algorithms.

A. Implementing the Per-Cell Scheduling

To compute the optimal solution of the per-cell scheduling

problem, it suffices to know the number of RBs in the

1Computation time is evaluated on a 2.4 GHz Intel Core i7 computer with
8 GB of memory size.
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Fig. 11. Computation time of the centralized and distributed approaches

system. Such information is available at the BS level. The

output consists in a percentage of time that is allocated to

a user on each RB. Therefore, a simple but efficient way

of implementing the solution is to extend the Round-Robin

scheduler in a way to allocate equal time shares to the users

in the cell on each RB.

B. Implementing the Centralized Power Control

To compute the optimal solution of the multi-cell power

control problem, it suffices to know the channel power gain

on all RBs across all users. Such information can be made

available at a central unit level using proper signaling. This

central unit can be either one of the BSs configured by the

operator for a given geographical region or a Base Band

Unit (BBU). The latter appears in two practical deployments:

Coordinated Multi-Point (CoMP) and Cloud-RAN [52].

In order to compute the signaling burden of a centralized

power control, let us consider that each BS sends to the central

unit a vector containing the channel power gain of the serviced

users on all RBs. The size of the vector is equal to the number

of users multiplied by the number of RBs in a cell. The latter

ranges between 6 and 100 for LTE FDD systems. Thus, in the

worst case, each BS sends 100 channel power gain values per

user to the central unit. Note that signaling is only required

when the channel power gain changes on a given RB: this will

occur at most once each TTI of 1 ms, when considering fast

fading [53]. Let us suppose that channel power gain is encoded

using 8-bit words, then the maximum signaling burden added

by the centralized power control is 800 bits/ms or 800 kbps for

each user in a cell. For instance, considering 10 users per cell

we obtain a total of 8 Mbps in the worst case. The additional

signaling load is relatively low and will be anyhow part of

any inter-cell interference coordination protocol integrated in

LTE-Advanced systems.

As shown in Section IX-D, the convergence time of the

centralized power control algorithm does not exceed 1.2 s.

Obviously, this time can be further reduced when the algorithm

is implemented on a BS or BBU computation engine. Hence,

the optimal solution can be reached before any change in the

inputs.



0733-8716 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2016.2611847, IEEE Journal
on Selected Areas in Communications

16

C. Implementing the Distributed Power Control

Our game theory-based approach is fully distributed as

decisions made by any BS are completely decentralized in

the sense that no information from other BSs is needed. At

each iteration, any BS needs to know the channel power gain

of its serviced users and the SINR on all RBs to solve the

local optimization problem P̂3(π). Note that the distributed

approach does not necessitate any explicit information on the

power allocation of other cells, contrary to the centralized ap-

proach. Particularly, the SINR information is already available

to the BSs through standard signaling of an LTE system. In

fact, the SINR can be easily inferred through the CQI (Channel

Quality Indicator) sent every TTI by scheduled users.

In each round of our Best Response algorithm, BSs take

turns according to a predefined sequencing and perform power

allocation. We assume that the SINR resulting from the power

allocation of any BS will be available no later than one TTI.

As shown in Section IX-D, the NE is almost attained after two

rounds and the network can fairly follow an eventual change

in the initial radio conditions.

XI. CONCLUSION

The preponderant energy consumption at the BS level has

heightened the necessity to focus on energy efficient resource

management in cellular networks. Therefore, we have put

the stress in this article on energy efficient joint scheduling

and power control in downlink multi-cell OFDMA networks,

which lies in the scope of green radio communications. We

have covered this challenging two-faceted problem according

to two widely adopted approaches in radio resource manage-

ment, namely, the centralized approach and the distributed ap-

proach. We have introduced algorithms that compute optimal

solutions for each approach and proved mathematically their

convergence.

On the one hand, the centralized approach makes use of

the Dinkelbach method that converges in only three iterations.

We have also showed that the optimal solution is obtained

in less than one second. On the other hand, we have proved

that the distributed approach converges, also in less than one

second, to a pure NE using simple Best Response dynamics.

The rapid convergence of both approaches paves the way for

realistic deployments.

We have assessed the bearing of our approaches over the

state-of-the-art algorithms using extensive numerical simula-

tions. In a low interference scenario, the energy efficiency of

both the centralized and distributed approaches is higher than

the reference methods. Particularly, the centralized approach

largely surpasses the one that maximizes the spectral efficiency

or the legacy maximum power approaches. However, this

predominance is reduced in a high interference scenario.

In future work, we focus on the investigation of joint

scheduling and power control algorithms under radio condition

fluctuations due to fading and mobility, in addition to the

impact of partial or erroneous knowledge about the radio

channel state. In particular, the focal point of our future work

will be the stability assessment of the centralized optimal

solution and the distributed Nash equilibrium.

APPENDIX A

SOLUTION OF THE PER-CELL SCHEDULING PROBLEM

Let us start by writing down the following optimization

problem:

(Px(θ)) : max
θ

{
∑

i∈I(j),k∈K

log(θik)} (32a)

subject to
∑

i∈I(j),k∈K

θik ≤ I(j)|, (32b)

0 ≤ θik ≤ 1, ∀i ∈ I(j), ∀k ∈ K. (32c)

Constraints (32b) are obtained by adding constraints (13b)

of the per-cell scheduling problem (P̂1j). Thus, (Px) is a

relaxation of (P̂1j). In the relaxed problem, (32b) are binding

and can be replaced by equality constraints. Moreover, the

objective is equivalent to
∏

i∈I(j),k∈K θik. Therefore, (Px)

consists in maximizing the product of variables with constant

sum. The maximum is known to be reached at equality, and

we have at optimality:

∀i ∈ I(j), ∀k ∈ K, θ∗ik =
|I(j)|

|I(j)| × |K|
=

1

|K|
. (33)

It is straightforward to show that θ∗ik is also a feasible solution

of the per-cell scheduling problem (P̂1j). Knowing that if an

optimal solution of the relaxed problem is feasible for the

original problem, then it is optimal for the original problem,

we deduce that θ∗ik is an optimal solution of (P̂1j) and

conclude the proof.

APPENDIX B

CONVEXITY OF THE MULTI-CELL POWER CONTROL

PROBLEM

In the following, we demonstrate that problem (P̂2) in (12)

can be transformed into a convex optimization via a change of

variables. Let us start by performing a variable change π̃jk =
log(πjk) and defining Ñ0 = log(N0) and G̃ijk = log(Gijk).
The objective function in (12a) can be written as:

∑

j∈J ,i∈I(j),k∈K

log(
exp(π̃jk + G̃ijk)

exp(Ñ0) +
∑

j′ 6=j exp(π̃j′k + G̃ij′k)
)

− η(
∑

j∈J ,k∈K

p1j exp(π̃jk) +
∑

j∈J

p0j )

=
∑

j∈J ,i∈I(j),k∈K

(π̃jk + G̃ij′k)

−
∑

j∈J ,i∈I(j),k∈K

log(exp(Ñ0) +
∑

j′ 6=j

exp(π̃j′k + G̃ij′k))

− η(
∑

j∈J ,k∈K

p1j exp(π̃jk) +
∑

j∈J

p0j )

The first term of the objective is a linear function in π̃jk, thus

concave (and convex). The second term contains log-sum-exp

expressions which are convex. The opposite of the sum of

convex functions is concave, thus the second term is concave.

Similarly, the opposite of the sum of exponentials is concave,

which completes the proof of the concavity of the objective

function.
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Consequently, the total power constraints in (12b) can be

written as:
∑

k∈K

exp(π̃jk) ≤ pmax
j

log(
∑

k∈K

exp(π̃jk))− log(pmax
j ) ≤ 0

This constraint is thus convex by virtue of the properties of

the log-sum-exp functions. The constraints in (12c) can also

be written as linear constraints:

exp(π̃jk) ≥ pmin

−π̃jk + log(pmin) ≤ 0

Knowing that the maximization of a concave objective func-

tion subject to convex constraints is a convex optimization

problem, we conclude on the convexity of the transformed

problem.
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