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Abstract—Femtocells are a promising approach to provide
high data rates through autonomous configuration in indoor
environments. However, due to the random and uncontrolled
deployment of femtocells within users premises, interference
between femtocells themselves and with macrocell base stations
is a major issue. In this work, we look into the interference
management problem and work towards the development of an
interference mitigation algorithm based on the localization of
randomly positioned femtocells using radio environmental infor-
mation. In particular, we show that based on building floorplans
and basic information on the urban landscape, femtocells can
accurately localize themselves using macrocellular base stations
as anchor nodes. Based on the localized femtocell positions,
various channel allocation schemes are employed to mitigate
interference.

I. INTRODUCTION

There has been a fundamental shift in the use of mobile
networks from the domination of voice-based communication
to that of data communications. According to the survey in [1],
the global mobile data usage has been doubling every year
since 2006 with the mobile data usage for the year 2011 being
8-times the total Internet data usage in 2000. To meet the
arising requirements for more and more capacity, techniques
ranging from reduction of cell size, better modulation schemes
and use of smart antenna arrays are developed. However, such
techniques are expensive to apply in indoor environments
where signal attenuation is high. Even though voice signals
can tolerate low signal levels, data signals require high SINR
levels to achieve usable bitrates. As a solution, inexpensive,
low-power small femtocell base stations have emerged [2].
Femtocell base stations (FBSs) are similar to a macrocell base
station (MBS) in terms of major functionality but within a
smaller area. The FBSs are user deployed as opposed to being
deployed by the operator in a planned fashion as in the MBS
case.

To improve capacity and quality of data communications
in indoor environments, several heterogeneous networks are
being deployed [3]. In such networks, the FBSs cater to a
smaller range (radius = 10–50 m) while the MBSs serve a
larger area (radius = 300–2000 m) [4]. FBSs mainly cover
the dead zones and indoor environments. In such hetero-
geneous networks, interference management is a key issue
especially due to the uncontrolled way of deploying the FBSs.
Although dedicated allocation of spectrum to base stations
through heavy frequency reuse prevents inter-tier interference,

it is inefficient in terms of spectrum utilization. Compared
to dedicated allocation, intra- and inter-tier spectrum sharing
is more efficient in spectrum utilization. The disadvantage
of spectrum sharing is obviously that it may cause high
levels of interference amongst the base stations if not well
designed [5]. In literature interference mitigation methods
based on frequency hopping, power control and directional
antennas have been proposed [6], [7]. In most cases, these
methods do not take into account the non-fixed nature of
the FBS positions. The FBSs should have self-organization
capability in terms of adaptive interference mitigation to cope
with the constant relocation of FBSs, placed within users
premises.

In this paper we propose an environment-aware localisation
based approach for interference management. We show that
femtocells can be localized with high accuracy through the
use of environmental information such as building floorplans
and basic information on the urban landscape, and using as
anchor nodes the macrocellular base stations whose locations
are known. Our approach is closely related to and can be
implemented using the recently proposed Radio Environment
Map (REM) approaches for management of future cellular
networks [8]. Based on the inferred location information,
we focus on location-based co-tier interference management
for OFDMA-based FBSs in downlink scenario. The concept
can be easily extended to the co-tier uplink and cross-tier
scenarios. For the localization based interference mitigation
algorithm, FBSs are located using the knowledge of the sur-
rounding environment of the FBSs. To counter the dynamics of
the network, FBSs can be periodically located and eventually
assigned OFDMA sub-channels.

The rest of the paper is organized as follows. In Section
II, we look into key related work. Section III consists of the
description of the proposed approach. In Section IV, the results
obtained through simulations are shown, demonstrating the
performance gains obtained using environmental information.
We conclude the paper in Section V summarizing our results
and outline future work.

II. RELATED WORK

Interference management for femtocells has been a highly
active research topic for some time now. Most of the existing
work on the topic has focused on mitigating two major
categories of interference, commonly defined as follows:
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1) Cross-tier Interference — Occurs between the MBSs and
FBSs mainly in the femto-macro boundary region.

2) Co-tier Interference — Takes place between the closely
located co-channel FBSs with overlapping channel allo-
cations.

Both cross-tier and co-tier interference mitigation approaches
have been studied extensively in the literature, with an
overview given in [9]. In this paper our focus will be on the co-
tier interference, although the approach developed can easily
be extended to the cross-tier case as well.

As mentioned in the introduction, our approach is based
on FBS localization. For the localization of wireless nodes
in indoor scenarios, the global localization systems like GPS
are not sufficiently accurate. Signal propagation in indoor
environment is unpredictable where reflection and diffraction
of signals from multiple walls and indoor objects cause
severe multipath interference at the receiver. In most indoor
localisation methods proposed [10]–[12], RSSI based methods
have been suggested as these do not require special hardware,
tight synchronization, or advanced signal processing at the
receiver. RSSI-based methods can be easily employed, without
additional expenses like directional antennas to achieve high
accuracy provided that propagation losses to anchor nodes of
known locations are known, or the received signal strengths are
mapped beforehand using alternative localization approaches
such as manual referencing. The novelty of our approach is
the use of radio environmental information to assist in the
localization, with the surrounding MBSs acting as anchors for
the localization of dynamic FBSs.

Deriving the propagation losses from environmental infor-
mation requires the use of propagation models. The simplest
of these is the log-distance path loss model given as [13]

PL(d) = PL(d0) + 10n log
(
d

d0

)
, (1)

where PL is path loss and n is the path loss exponent. The
coefficients for the relation are determined by obtaining a
curve-fit for the variation between distance and path loss. Bet-
ter results can be obtained using semi-empirical models [14]
and more advanced parametric models such as ray-tracing
models [15]. For the propagation of radio signals from outdoor
to indoor scenarios, the radio waves are highly influenced by
the outer walls, wall materials and the internal organization
of the building. The loss in signal strength depends on
the reflection and transmission coefficients of walls. There
are various outdoor-to-indoor propagation models which are
a combination of outdoor and indoor models with special
consideration regarding the transmission of radio wave from
outdoor to indoor environment. While in COST 231 Model,
the radio waves penetrate through the outer walls to enter a
building, in the work in [16], the entry points are assumed to be
through openings like doors and windows. Unfortunately, real
path losses cannot be accurately represented by deterministic
path loss models. Therefore, we use in this paper a method
based on maximum likelihood to remove the uncertainty.

III. ENVIRONMENT-AWARE INTERFERENCE
MANAGEMENT FOR FEMTOCELLS

Our proposed Environment-Aware Interference Manage-
ment (EIM) algorithm can be divided into two separate parts,
namely an algorithm for localization of individual femtocells
using environmental information, and a family of interference
management approaches based on the localization information.
We shall explain both of these in detail in the following.

A. Localization of Femtocells

For the localization process, environmental models of the
indoor and the urban environment are used. Indoor model
is required for the building containing the FBS whereas
the urban model replicates the surrounding environment of
the building. Urban models contain information such as the
locations and heights of the buildings, commonly available
through the planning tools used by the network operators.
Indoor models give a 3D description of the indoor environment
and contain information such locations and types of the walls.
Such information can be made available from the plans of
the building through tools that can extract position of walls
from floor plans. Based on the urban and indoor environmental
information, the localization algorithm consists of two parts:
database generation and localization based on database refer-
ral.

1) Database Generation: The databases generated (further
known as indoor Calculated-Power Databases (CPDBs)), con-
tain x-coordinates, y-coordinates and the Calculated Received
Power (CRP) at different equidistant points through the indoor
environment. CPDBs are calculated with respect to each MBS.
These are illustrated in Figure 1. The measurement points Pi

are separated by a specific distance depending on the required
resolution. The CRP at a point Pi depends on the transmitted
power, path loss due to urban environment and penetration loss
due to indoor environment. While path loss is calculated based
on the distance between MBS and Pi, urban structural model
and outdoor propagation model, the indoor structural data and
indoor propagation models are used to obtain penetration loss.
The path loss can be given as

λpath = F (d, nbuildings, hbuildings), (2)

where, λpath is the urban path loss, d is the distance between
the given MBS and Pi, nbuildings is the number of buildings
between the given MBS and Pi and hbuildings is the average
height of buildings between the given MBS and Pi. The path
loss function F can be selected to be of a simple paramet-
ric form, such as the extended Walfish-Ikegami model [18].
Similarly, penetration loss can be depicted as

λpen = nwallsΨ, (3)

where λpen is the penetration loss, Ψ is the transmission and
reflection loss (which depends on the thickness and material
of walls, frequency of operation and angle of incidence of
the signal), and nwalls is the number of walls between the
points Pi within the considered building and the given MBS.



Fig. 1. Illustration of large differences in received signal strengths from three nearby base stations (blue dots) induced by the indoor environment. For
purposes of illustration of the differences in arising signal strengths the base stations have been placed very close to the building (akin to picocellular base
stations). For the simulations carried out in the paper realistic base station distances are used instead.

Thus, CRP at Pi is the difference of the transmission power
of the given MBS and the total loss in signal strength given
by λpen + λpath. The results, namely CRP and the x- and
the y-coordinates of Pi are stored in the indoor CPDB for the
given MBS. CPDBs are obtained for all the MBSs.

We emphasize that the CRP values can either be obtained
through sufficiently advanced propagation simulations, or
through measurement based approach where the propagation
models are calibrated through measurements conducted by
mobile terminals and femtocells. The latter can significantly
increase the accuracy of the approach in the presence of
uncertainties in the indoor propagation characteristics.

2) Localization based on Database Referral: The CPDBs
for a FBS-cluster are made available to the Femto-Gateway
through, for example, local Radio Environment Map (REM)
instance. When an FBS is to be localized, the REM refers
to the CPDBs. Each FBS receives real-time signals from the
reference MBSs, referred to as the Actual Received Powers
(ARPs). For a given MBS m, the FBS receives ARPm from
MBS m (m ∈ {1, . . . ,M} where M is the number of MBSs).
The comparison of the CRPs from indoor CPDBs and the
ARPs, for the respective MBSs helps the FBS to localise
itself. If the ARPs from different MBSs at a point match the
CRPs of the MBSs at that point, the FBS is predicted to be
located at that point. However, finding an exact power match
between ARPm and CRPm values of indoor CPDBm is highly
improbable as the ARPs are shadowed and faded compared to
the simple path loss estimates. Hence, to obtain the location
of the FBS, the unwanted shadowing effect on the ARPs must
be taken into account.

For each MBS, the shadowing probability density function
(PDF) is obtained for the respective MBSs from the urban
propagation model. Instead of getting an exact location, we
aim to obtain the maximum likelihood location of the FBS
using the shadow PDFs. When ARPs are received by a FBS,
for a given MBS m, the effective shadow loss is obtained by
subtracting the CRPm values of all points Pi in the building
(obtained from CPDBm) and ARPm. Based on the shadow
PDF of the MBS m, a likelihood probability is associated to
each point Pi. Applying this procedure for all the m MBSs,
each point gets m likelihoods assigned to it. The overall
likelihood for each point Pi is obtained from the product of in-
dividual likelihood probabilities. The point with the maximum

overall likelihood is the maximum likelihood solution for the
localization problem. We also define the maximum likelihood
room, which is the room where the maximum likelihood point
is. The latter is useful for interference management problems,
as the interference relations between femtocells and also across
tiers are often dominated by the wall losses, instead of precise
positions of the nodes within the rooms.

B. Channel Allocation Schemes
To manage interference between the FBSs in the indoor

environment, OFDMA sub-channels are allocated to the FBSs
based on the determined locations. Channel allocation based
on location knowledge ensure that all the User Equipments
(UEs) catered by the FBSs have higher SINR compared to
when allocation is done without location information. As the
optimal allocation of channels is NP-hard, different heuristic
and meta-heuristic methods are commonly used for channel
allocation. These methods are able to approximate the opti-
mal condition with little error. In this work, the frequency
assignment is done using two different methods described in
detail in the following.

1) Graph Colouring Method: Here the channel allocation
problem is mapped as a graph coloring problem, where the
different FBSs are treated as the vertices V of an interference
graph G = (V,E) and interference between the FBSs is
represented through edges E. The available sub-channels are
color coded, and these colors are marked to the vertices of the
interference graph with the condition that any two neighboring
vertices do not have the same color. This ensures there is
no co-channel interference. As graph coloring is an NP-Hard
problem, the allocation time increases drastically with the
increase of graph size. Hence, to get a solution within practical
limits, certain heuristic methods like DSATUR algorithm [17]
have been proposed in literature. The DSATUR algorithm
gives a very good approximation of the actual solution, and
we adopt it as one foundation for our interference management
scheme.

2) Simulated Annealing Method: Simulated annealing [19],
[20] is a probabilistic meta-heuristic method for solving global
optimization problems that gives good results even in presence
of large search spaces. SAM has served well in allocation of
channels in 802.11 WLAN Networks [21] and for UMTS [22].
In this work, to obtain a channel allocation with the least co-
channel interference, the objective function, Ψ is defined as



the sum of interference at all the range points of all the FBSs
due to a given channel allocation. The steps of the simulated
annealing algorithm are then as follows:

(a) Initially, randomly allocate channel and set the initial
temperature, T = T0. Calculate the initial objective function
value, Ψ0 for the initial channel allocation, C = C0.

(b) At the end of the nth iteration (T = Tn; Ψ = Ψn), the
current channel allocation Cn is obtained.

(c) For the (n + 1)th iteration, new channel allocation,
Cn+1 is obtained as one or more FBSs randomly change
their previously allocated channels. Based on Cn+1, Ψn+1 and
Tn+1 are calculated.

(d) If there is a decrease in Ψn+1 (i.e. Ψn−Ψn+1 or ∆Ψ ≤
0), then the current allocation is replaced by the new allocation
(C = Cn+1).

(e) If there is an increase in Ψn+1 (i.e. ∆Ψ ≥ 0), then
the new allocation is accepted with probability P , where P
is given by P = exp(∆Ψ/Tn+1). If the new allocation is
accepted then the current allocation is replaced by the new
allocation (C = Cn+1). Else, the current allocation remains
the same (C = Cn).

(f) Steps (b)–(e) continue with the temperature T decreased
at each time step until T = 0. The current allocation at the
end of last iteration is the final allocation.

IV. PERFORMANCE EVALUATION

The localization algorithm and the different channel alloca-
tion schemes are tested in different indoor environments for
different propagation models and reference MBS deployment
scenarios. Depending on the channel allocation, the average
downlink SINR values for the different scenarios are calcu-
lated. These SINR values are used to analyze the variations
of downlink SINR values with different FBS deployment
scenarios.

A. Localisation Performance

The implementation and verification of the localization
algorithm is carried out in a realistic simulation of an urban
environment of a large city performed using the WinProp
propagation simulator. Detailed indoor models of single and
double storied multi-room buildings were obtained to study
the indoor environment. The heights of the buildings are
5 m and 10 m, respectively, with varying room sizes and
typical wall thickness of 10 cm. The frequency of transmission
of MBSs and FBSs is 2000 MHz. The localization process
depends on the deployment and transmission characteristics
of the reference MBSs. In this work, MBSs are assumed to
have a transmission power of 10 W and transmit using omni-
directional antennas. The transmitters are located at a height
of 15 m from ground level. The received power values are
measured at height of 1.5 m for single-storied building and at
heights of 1.5 m and 6.5 m from ground level for double-
storied building respectively. Different simulation scenarios
considered are shown in Table I.

From the simulations, the location of the FBSs can be
correctly predicted within a room with an accuracy of 88% in

TABLE I
SIMULATION SCENARIOS FOR FEMTOCELL LOCALISATION.

Scenario MBS count Propagation model

A 8 MBSs COST 231 Walfisch-Ikegami
B 8 MBSs Measurement-based fit to extended Walfisch-Ikegami
C 6 MBSs COST 231 Walfisch-Ikegami
D 6 MBSs Measurement-based fit to extended Walfisch-Ikegami
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Fig. 2. Summary of localization performance using environmental infor-
mation. The three lines of the boxes correspond to median, 25th and 75th
percentile of localization error, with the whiskers extending to data points at
most 1.5 times the interquartile range from the edge of the box.

scenario A and 64% in scenario B. For scenario C and D, the
accuracy is less, being 54% and 10% respectively. Figure 2
summarizes the localization performance for the considered
scenarios. The distance error, i.e. the distance between the
actual location and the predicted position of the FBS was also
determined. The mean distance error in scenario A is 1.22 m
while in D, it is 4.43 m. Distance error is zero for about 30%
of simulation runs in scenario A and about 15% of simulation
runs in scenario B. As can be seen in the results of scenarios
A–D, there is a variation in the accuracy in localization
of FBS due to different propagation model for generating
CPDB. Also, for different MBS deployment scenarios, given
that the propagation models for indoor CPDBs are the same
(as in scenarios A/C and B/D), there can be considerable
difference in the performance of the algorithm. The variability
of distances between the MBSs and the FBS also plays a role
in the results, as higher variability means higher contrasts
in received powers, leading to better predictions. Overall,
for dense urban environments with several nearby MBSs,
very good localization performance is achieved by exploiting
environmental information.

B. Interference Management Performance

The two selected interference management schemes are
simulated under different FBS deployment scenarios and in-
door environments assuming that the FBSs have been located
with the accuracy as determined in the previous section. The
simulation scenarios are summarized in Table II. Depending
on the channel allocation, the average FBS SINR is calculated
by averaging all the FBS range points within (a) Building,



TABLE II
SIMULATION SCENARIOS FOR INTERFERENCE MANAGEMENT SCHEMES.

FBS deployment

Scenario Number of femtos Number of channels Indoor environment Interference management scheme

A1 8 3 Single-storied apartment building Graph coloring
A2 8 3 Single-storied apartment building Simulated annealing
B1 12 4 Single-storied apartment building Graph coloring
B2 12 4 Single-storied apartment building Simulated annealing
C1 20 6 Two-storied apartment building Simulated annealing
C2 20 8 Two-storied apartment building Simulated annealing
D1 30 6 Two-storied apartment building Simulated annealing
D2 30 8 Two-storied apartment building Simulated annealing
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Fig. 3. Performance of interference mitigation techniques: (a) Boxplots for Scenarios A1 (Building & Room) & A4 (Room), (b) Boxplots for Scenarios B1
(Building & Room) & B4 (Room), (c) Boxplots for Scenarios C1 & C2, and (d) Boxplots for Scenarios D1 & D2 with MDS = -40 dBm.

and (b) Room containing the FBS. The Average FBS SINR
is calculated as the mean ratio of the received signal strength
to the co-channel interference power and noise power. Noise
of course depends on the bandwidth of each channel. In this
work, the overall bandwidth is 10 MHz and each sub-channel
has bandwidth of (10/η) MHz (η is the number of channels),
and the noise power is assumed to be given by the corre-
sponding thermal noise. Note that the simulations are done
by randomly placing the FBSs across the indoor environment
for multiple simulation runs. The average scenario SINR is
calculated as the average of the FBS average SINRs over
all the simulation realizations. For the simulations, Minimum
Detectable Signal (MDS) strength of −40 and −50 dBm
is used for interference graph generation for graph coloring
approach. The average scenario SINRs calculated for the
different scenarios are shown in Tables III and IV. Figures 3
(a)–(d) show the comparison of the statistical analysis of the
average scenario SINRs for the different scenarios for MDS

TABLE III
SINR DISTRIBUTION FOR ALL SCENARIOS (MDS = -40 DBM).

Scenario Method Mean 5th Percentile 95th Percentile

A1 Building 43.02 31.51 59.14
Room 49.41 34.31 67.85

A4 Room 51.31 35.07 68.52
B1 Building 38.65 27.05 48.22

Room 44.47 30.47 56.66
B4 Room 43.27 28.98 59.26
C1 Room 40.04 26.23 62.01
C2 Room 49.43 31.29 111.4
D1 Room 30.11 17.16 47.49
D2 Room 35.40 21.91 60.93

of −40 dBm and −50 dBm.
For the previous simulations, channel allocations were done

for accurately located FBSs. However, as we saw earlier,



TABLE IV
SINR DISTRIBUTION FOR SCENARIOS A1 AND B1 (MDS = -50 DBM).

Scenario Method Mean 5th Percentile 95th Percentile

A1 Building 34.30 22.83 51.09
Room 48.72 33.47 67.22

B1 Building 31.31 22.12 40.87
Room 45.77 36.12 58.17

TABLE V
IMPACT OF LOCALIZATION INACCURACY ON

AVERAGE SCENARIO SINR WITHIN A BUILDING.

Method Localisation Mean 5th Percentile 95th Percentile

Building Accurate 41.79 26.22 107.18
Inaccurate 19.60 1.72 103.41

Room Accurate 48.77 31.30 111.51
Inaccurate 22.35 3.38 101.10

accurate localization is not possible in all of the simulation
scenarios. Further simulations were done to compare the
average scenario SINRs for allocation in case of inaccurate
localization and accurate localization. In these simulations,
presented here only for Scenario B for space reasons, the
locations of FBSs within the circle with radius of 95th
percentile of the distance error (4.47m) are randomly selected.
Comparison of scenario SINR is done for scenario A1 (MDS
= -40 dBm). Thus, depending on the changed position but
same channel allocation, room and building based Average
FBS SINRs are calculated for all the FBSs. It should be noted
that the random positions of FBS within this error circle are
not limited within the maximum likelihood room of FBS.
Hence, two cases are taken into consideration. In Case 1,
the random positions within the building are chosen whereas
in Case 2, only the random positions within the maximum
likelihood room containing FBS are chosen. Table V show the
variation in average scenario SINR for scenario A1 in case of
accurate and inaccurate localization. It can be observed that
the mean SINR variation in case 1 is 22.19 dB when range
points within building are considered, while it is 26.42 dB
when range points within room is considered. Note that the
very high SINR values for the 95th percentile occur due to very
close by placements of the FBS and mobile terminal for certain
FBS locations, and due to the simulations not considering the
near field effects of the transceivers.

V. CONCLUSIONS

In this paper we have shown how environmental information
can be used for accurate femtocell localization and interference
management. Our proposed algorithm can locate femtocell
base stations within a room with a maximum probability of
88% with the average error in localization between 1.36 m and
4.65 m for the empirical and parametric propagation models.
Channel allocation using heuristic and meta-heuristic methods
like simulated annealing and graph coloring yield minimum
average SINR of 19.61 dB and a maximum average SINR of

51.31 dB for the downlink users for the simulated scenarios.
The results show that the Environment-aware Interference
Management (EIM) algorithm for FBSs proposed in this
work can be highly effective in localizing FBSs in indoor
environments and in mitigation of co-channel interference.
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