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ABSTRACT
We study the performance characteristics of cognitive wire-
less networks under different dynamic spectrum access sce-
narios. Our focus is especially on the influence of spatial
structures of the primary and secondary user networks on
the achievable performance of the secondary network. We
adopt techniques from spatial statistics to develop stochastic
models for the structure and interaction of these networks.
The chosen models are based on Gaussian random fields and
Gibbs point processes, and are firmly grounded on empirical
data. We then apply extensive Monte Carlo simulations to
study the behavior of these models and their related perfor-
mance properties. The models and the applied techniques
are applicable also to a wider variety of networking prob-
lems. Our results provide first quantitative assessments on
the influence of the spatial structure, and especially corre-
lation properties, of the involved networks on the expected
performance and thus on the utility of dynamic spectrum
access based systems.

Categories and Subject Descriptors
C.2 [Computer-Communication Networks]: Miscella-
neous; I.6.4 [Simulation and Modeling]: Model Vali-
dation and Analysis; I.6.5 [Simulation and Modeling]:
Model Development

Keywords
Performance evaluation, dynamics spectrum access, cogni-
tive wireless networks, spatial statistics

1. INTRODUCTION
Cognitive Wireless Networks (CWNs) and in particular

Dynamic Spectrum Access (DSA) based systems have be-
come one of the most intensely studied research topics in
wireless communications [1–3]. There has been significant
progress during recent years in understanding theoretical
foundations of the individual technologies involved, as well
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as studying different application scenarios for DSA (see,
for example, [4–7]). However, the system-level performance
properties of dynamic spectrum access networks remain rel-
atively poorly understood, especially when the primary user
is not a TV broadcasting network. This is in part due to the
very complicated dynamics over space, time, and frequency
domains inherent in such networks. These dynamics arise
because the reuse of spectrum effectively couples the dy-
namics of the involved networks together in a manner that
does not occur in more traditional wireless communication
systems. From practical point of view, most significant re-
sults have probably been estimates on available spectrum
for DSA use in the context of TV white spaces based on
actual TV tower data sets [8–12]. These data sets have
also been used to study the potential performance of Wi-
Fi or cellular network deployments in the TV bands (see,
for example, [13]). Some more general asymptotic capacity
results have also been presented in the literature, but these
are usually derived assuming either very large-scale multi-
hop networks, or uniformly random deployment of nodes in
both primary and secondary networks [14–17].

In this paper we provide detailed results on the influence
of spatial structure of the primary and secondary networks
on the achievable performance of the secondary system. We
formulate a stochastic model for the structure and inter-
action of the primary and secondary user networks using
techniques from spatial statistics [18] in an effort to strike
a balance between mathematical tractability and realism of
the model. In particular, we argue based on extensive spec-
trum use measurements and several empirical data sets on
wireless network structure that a combination of Gaussian
random fields [19] and Gibbs point processes [20] with care-
ful selection of parameters yield good models. While our
focus here is on the influence of the spatial structure of the
networks involved on performance, the models can be ex-
tended towards the full space-time case as well in the manner
of [21]1. We believe that the modeling approach adopted is
also of independent interest, and can be used as a foundation
for treatment of wide variety of other types of networking
problems, wireless or otherwise. The price to be paid for the
added realism in this approach is the scarcity of closed-form
analytical results to rely on, except in various asymptotic
cases. Accordingly, in order to obtain results that are rele-
vant for expected deployments, we focus instead on the use

1In this paper we generalize the approach used in [21], where
we applied actual cellular network base station locations as
a model of the primary network. In the present work much
more general spatial models are used.



of Monte Carlo simulations in deriving our performance es-
timates.

The rest of this paper is structured as follows. In Section
II we give a short overview of the DSA scenarios considered
in the rest of the paper, and discuss the different design al-
ternatives. We then give the precise model formulation of
the arising networks based on the scenarios in Section III. In
Section IV we present our results on the arising secondary
network structures and their allowed transmit powers, and
then extend these results towards capacity estimates in Sec-
tion V. We finally draw our conclusions in Section VI.

2. DEFINITION OF THE
CONSIDERED SCENARIOS

Before presenting the modeling framework in detail, we
shall briefly recall some basic facts about DSA based net-
works. The defining property of such networks is that a
secondary network can access opportunistically the licensed
spectrum of a primary network that is willing to share its
spectrum under some constraints. In the classical DSA sce-
nario the primary network is an incumbent holding a license
for a range of frequencies used, e.g., for broadcasting ser-
vices, whereas the secondary user is a packet radio network
seeking to use the same range of frequencies when and where
the secondary activity does not degrade the primary quality
of service more than given by a specified threshold. How-
ever, the range of potential applications for DSA techniques
is much broader. For example, the primary and secondary
systems might be operated by the same operator (e.g. the
primary being a mobile network and the secondary an IEEE
802.11 hotspot deployed by the same operator). The sec-
ondary network could even be an integrated part of the
primary network such as in the case of femtocell network
that might need to use some of the allocated sub-channels
to the macrocells due to high traffic loads. In our model
we do not make specific assumptions about the technologies
involved. In particular, primary networks will not be lim-
ited to broadcasting networks with very large coverage as is
usually considered in the literature (e.g. IEEE 802.22).

The scenario in which DSA is being used defines the con-
straints the secondary must follow with respect to the access
to the primary spectrum. These constraints can be either
related to a reduction in the coverage area or to an accept-
able interference probability [6, 17, 22, 23]. In this paper,
we mainly use the interference probability as the primary
constraint. However, it should be noted that a mapping be-
tween the two approaches can be derived when specific pri-
mary networks with known system characteristics are con-
sidered. By using the interference probability constraint,
the primary network will ensure that all its users have some
required level of Quality of Service (QoS), meaning that the
outage probability is kept at a low level. This is reflected
by the fact that the interference probability experienced by
any primary network client should not exceed a threshold ε.
Depending on the chosen application scenario this can either
be achieved by on-line algorithms estimating the interference
probability for a given secondary network configuration, or
by defining through off-line means a fixed spectrum access
policy for secondary use. The latter can be based on, for
example, use of an energy detector and a limit on maximum
allowed transmit power.

The interference probability with respect to primary user,

p, is the probability that the experienced interference I by
p due to secondary activity exceeds a predefined threshold
ιmax

Pint ≡ P {I ≥ ιmax} . (1)

In general, one can define a spectrum hole as “the region
of space–time–frequency in which a particular secondary use
is possible” [6]. In this paper we focus on the spatial di-
mension, defining spectrum holes as regions in which either
the secondary can transmit with a positive power while re-
specting the interference constraint, or in which the given
energy detection threshold θE is not exceeded. These will
be referred to as the power control model and the energy
detection model in the following, respectively.

In order to relate the interference probability to the spatial
structure of the involved networks, a model for interference
and thus for radio propagation is needed. We assume that
the interference I experienced by the primary due to the
activity of a secondary user at distance d and transmitting
with power P is given in logarithmic scale by

I(dBm) = P (dBm) − L(d) + ξ, (2)

where L(d) is the large-scale deterministic path loss and ξ is
a normal random variable used to model shadowing. Unless
mentioned otherwise, we assume ξ to have zero mean, and
standard deviation of σs = 7dB. For path loss L(d), we
adopt the Xia-Bertoni propagation model [24] defined for a
given frequency f (expressed in GHz) and distance d by

L(d) = K + A1 log10 (f) + A2 log10 (d) , (3)

where the constants K, A1 and A2 are taken to have val-
ues of 122.1 dB, 21 dB and 37.6 dB, respectively. With these
assumptions and considering ε as the threshold of the in-
terference probability the primary constraint can be written
using (1) and (2) as

1

2

»
1 − erf

„
ιmax + L(d) − P

σs

√
2

«–
= ε. (4)

Let us now relate the primary constraint (4) to the con-
sidered scenarios. In the scenario based on energy detection,
the size of the no-talk zone [6], in which the secondary user
is not allowed to transmit, depends on the distribution of
power received from the primary, and the energy detection
threshold θE . The latter is in turn set by, for example, a
regulator or the operator of the primary network based on
the maximum allowed transmit power P , maximum inter-
ference ιmax, interference probability ε and the propagation
model. Further, assumptions on primary and secondary net-
work structure are needed to make the connection to the
interference probability from these quantities. A typical ex-
ample of this scenario is the IEEE 802.22 system [11,12]. For
further discussion on detector based approaches, see [5,7,25].

In the scenario based on power control, the definition of
the spectrum hole becomes more flexible. In this scenario,
the no-talk zone is reduced to match the coverage area of
the primary2 and the allowed transmit power of the sec-
ondary user will depends on its relative position towards
the primary coverage area, or the nearest client of the pri-
mary network within this coverage area [26–28]. Implement-
ing such an approach is, of course, more challenging as the

2This is due to the fact that the receiver can be at any place
inside the coverage area, and therefore no secondary can be
allowed to be active there.



coverage area of the primary has to be either communi-
cated explicitly to the secondary (resulting effectively into a
geolocation-based scheme) or estimated on-line. The latter
can be accomplished using collaborative measurements and
techniques from spatial statistics and signal processing com-
munities [29–31]. Once the distance d to the coverage area
or the nearest primary client has been estimated, the sec-
ondary network can invert (4) to obtain the allowed transmit
power, given by

P (dBm) = ιmax + L(d) + σs

√
2 erf−1 (2ε − 1) . (5)

3. MODELS OF NODE LOCATIONS AND
SPECTRUM USE

We shall now introduce the models used for primary and
secondary networks that will be used throughout the rest
of the paper to study the performance characteristics of the
two scenarios introduced above. We shall begin by intro-
ducing our model of the primary network, and then consider
deployment models for the secondary system.

3.1 Random Field Models of
Primary Spectrum Use

The influence of the primary network on the secondary
one is usually studied by separately modeling the locations
of primary transmitters, and combining these with models
of transmitter activity and radio propagation to arrive at a
value of the power spectral density (PSD) at each point in
space. This results in models with large number of parame-
ters that tend to be fixed to particular technologies and de-
ployment scenarios. We instead aim at constructing a more
parsimonious family of models, combining all of these effects
into a single stochastic model that still can be fitted to em-
pirical data. More precisely, we shall assume that the power
spectral density of the primary transmitter network (mea-
sured in dBm) is a realization of a Gaussian random field
Z(x), with x taking values in some chosen domain D ⊂ R

2.
The actual marginal PSD distributions for large number of

transmitter usually have heavier upper tails than Gaussian
random fields, closer to α-stable distributions [32]. However,
for our applications the property that matters is the lower
tail of the marginal distribution that is usually very well ap-
proximated by Gaussian random fields. This assumption is,
of course, related to the common practice of approximating
sums of certain log-normal random variables by a log-normal
random variable [33], and seems to hold well in practice as
illustrated in Figure 1. For more details on the measurement
campaign based on which the figure was generated, see [34].

Assuming now second-order stationarity and isotropy such
a model is defined by the mean μZ ≡ E {Z(x)} and the
covariance function

C(r) ≡ Cov
`
Z(x), Z(x′)

´
, (6)

where r ≡ ‖x − x′‖. We choose the covariance function
considered here based on extensive measurement campaigns
we have conducted on spectrum use over space, described
in detail in [34,35]. Based on those results we shall assume
that C(r) is given by the Matérn model, defined by

CMatérn(r) ≡ σ2

„
1

2κ−1Γ(κ)

„
r

φ

«κ

Kκ

„
r

φ

««
, (7)

where κ > 0, φ > 0, σ2 > 0, Γ is the gamma function, and
Kκ is the modified Bessel function of the second kind.
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Figure 1: The normal quantile-quantile plot for the
marginal PSD distribution for the DVB-T channel
37 measured at 96 locations in downtown Aachen,
Germany [34]. The lower tail is clearly very well
approximated by the normal distribution.
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Figure 2: The Matérn covariance function for dif-
ferent values of the smoothness parameter κ (with
σ2 = φ = 1).

Figure 2 illustrates the shape of the covariance function
for different values of κ. The parameter σ2 controls the
variance of the marginal distribution of Z. The effective
correlation range of the model is defined as the value of r at
which C(r) = 0.05. It is influenced by both φ and κ, with
the influence of the latter shown in Figure 3. Typical values
of the effective correlation range used below will range from
some hundreds of meters to few kilometers. The parameter κ
is also related to the differentiability of realizations of Z(x).
Namely, if κ ≥ (2n+1)/2 the outcomes of Z will be n times
differentiable. Because of this property, we shall refer κ as
the smoothness of the model.

Corresponding to the two approaches to dynamic spec-
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Figure 3: Influence of the smoothness parameter
κ on the effective range of the Matérn covariance
function (with σ2 = φ = 1).

trum access discussed in the previous section, we introduce
two threshold parameters that together with Z define further
random sets that will be central for evaluating the secondary
network performance. The energy detection threshold θE de-
fines together with Z the no-talk zone

DNT ≡ {x ∈ D |Z(x) ≥ θE } , (8)

inside which secondary use based on energy detection is not
allowed. For secondary use based on power control, we de-
fine the primary network terminal sensitivity θS yielding the
potential primary user service area3

DSA ≡ {x ∈ D |Z(x) ≥ θS } . (9)

The service area DSA defines also another random field,
given at each point x ∈ D as the value of P in (5) eval-
uated at distance d = miny∈DSA ‖x − y‖. We shall call this
random field of allowed transmit powers. Figure 4 shows an
example realization of the different random sets and fields
defined until now.

3.2 Models for Node Locations in
the Secondary Network

For modeling the node locations in the secondary network
we shall also apply a probabilistic approach. We assume
that the locations are given by a point process. Intuitively, a
point process is a random process that yields as realizations
collections of node locations {Xi}n

i=1. The individual loca-
tions Xi as well as the total number of locations n are ran-
dom, but in general with complicated dependency structure.
More formally, a point process is defined as a random count-
ing measure N , assigning to each measurable set A ⊆ D a
random variable N(A), the number of points in A [36]. To
make the connection with the more intuitive definition, we
can always write

N =
nX

i=1

εXi , (10)

3Notice that for most actual networks DSA would be slightly
larger than the actual service area, with the difference being
dependent on the inter-transmitter interference characteris-
tics of the primary network.

where εx is a point mass at x (the measure equivalent to
Dirac delta distribution), the Xi are D-valued random vari-
ables, and n is a random variable with values in the set of
extended natural numbers (i.e., in N ∪ {+∞}). Usually N
is assumed to be simple, meaning that the points Xi are al-
most surely distinct. Due to its analytical tractability, N is
often assumed to be a homogeneous Poisson point process in
the related work in the literature. We shall instead choose
N to yield better correspondence to the spatial structure
of actually deployed wireless networks. In earlier work we
have shown that the Geyer saturation process [37] provides
a very good fit for a number of existing node location data
sets [38]. Unfortunately obtaining closed-form analytical so-
lutions within the Geyer model is extremely difficult, and
we have to rely on Monte Carlo estimates instead to study
the model outcomes. However, we feel this is well justified
by the increased realism achieved.

The Geyer saturation model belongs to the family of Gibbs
point processes, which are characterized by existence of a
density function f with respect to the homogeneous Poisson
point process of unit intensity. The Geyer saturation process
itself is a generalization of the Strauss process [39], defined
by the density

f(X) = αβ#(X )γsr(X ), (11)

where sr(X) denotes the number of point pairs of X that
are closer than distance r apart, β > 0 and 0 ≤ γ ≤ 1.
Notice that α is for normalization only, and is not an in-
dependent parameter. The Strauss model is powerful tool
for modeling regular point processes, in which individual
points tend to be separated by some minimum distance, but
it cannot model clustered distributions of locations common
in wireless networks. For the Geyer process an additional
saturation threshold ζ is added, bounding the contribution
of the exponent of γ and thereby enabling both clustered
(for which γ > 1) and regular processes to be modeled. The
case ζ → ∞ yields the Strauss process as a limit.

The parameters of the Geyer saturation model can be fit-
ted into empirical data sets using maximum likelihood analy-
sis, or pseudolikelihoods. The relevant techniques, including
tests for goodness-of-fit, have been primarily developed by
Baddeley and Turner, who have also provided an open source
implementation of the relevant routines [40,41]. We applied
these techniques in [38] on, among others, the access point
locations of the Google Mountain View Wi-Fi network [42],
obtaining an excellent fit with parameters r = 150 m, ζ = 2,
β ≈ 3.329 × 10−5 and γ ≈ 0.4112. The corresponding point
process forms our baseline location model, well suited for
representing especially deployments of Wi-Fi like dynamic
spectrum access networks.

3.3 Simulation Environment and Parameters
As discussed above, we shall in several instances rely on

Monte Carlo estimates in studying the performance charac-
teristics for the models introduced above. For all the sim-
ulations, we consider a square domain D of 10 km × 10 km,
resulting in, on average, N(D) = 1350 secondary user access
points being generated. Unless mentioned otherwise, the pa-
rameters of the correlation model defining Z are set to σ2 =
140 dBm2, φ = 480m, κ = 1 and μZ = -90 dBm, whereas
the thresholds used are set to ε = 0.05, θE = -105 dBm
and θS = -85 dBm (all given for fixed but arbitrary channel
bandwidth). The interference threshold ιmax of the primary
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(a) Realization of Z with Matérn covariance. (b) Corresponding random set DNT.
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(c) Allowed transmit powers for power control model. (d) Primary user service area DSA.

Figure 4: Illustrations of the model outcomes with parameters κ = 1, φ = 360m, σ2 = 140dBm2, μZ = −90dBm,
θE = -105dBm and θS = -90dBm.

and the transmit power for the energy detection model are
fixed at -100 dBm and 20 dBm, respectively. The effective
correlation range of Z with these parameters is 1920 m. The
generated realizations of Z consisted of 250 × 250 discrete
pixels, each 40 m × 40m in size. All the simulations were
carried out using the R environment [43], with the libraries
spatstat [41], geoR [44] and RandomFields [45] being used
for some of the computations needed. Formal error esti-
mates were used in each case to ensure that simulations were
repeated in sufficient numbers, and wherever possible, we re-
port robust statistics of the obtained empirical distributions
to ensure maximal confidence in obtained results.

4. IMPACTOFTHEPRIMARYNETWORK
STRUCTURE ON SECONDARY
TRANSMIT OPPORTUNITIES

We shall first study the influence of the primary network
structure on the occurrence of transmit opportunities for
the secondary user based on the models introduced above.
We are interested in the number of secondary user nodes
that have transmit opportunities in the energy detection and
power control models, as well as the quality of those opportu-
nities measured in terms of the allowed transmit power. The
related capacity estimates will be discussed in Section V.

The occurrence of transmit opportunities is dependent
solely on the structure of the random sets DNT and DSA.
While the shapes of those sets can be complicated, depend-
ing on correlation structure of Z, their sizes are very simple
to characterize. In fact, since the marginal distribution of
Z is assumed to be normal, the sizes of DNT and DSA and
thereby the numbers of nodes of N in these sets depend
only on the standardized differences ΔE ≡ (μZ − θE)/σ and
ΔS ≡ (μZ − θS)/σ.

Describing DNT and DSA beyond their sizes, and espe-
cially their influence on the distribution of active secondary
nodes and their allowed transmit powers does not appear
feasible through analytic means (although the theory of ex-
cursion sets [19] would provide some asymptotic results).
Accordingly, the following results are obtained from exten-
sive Monte Carlo simulations based on the models intro-
duced above. We shall first consider the energy detection
model, and the relation of the spatial structure of active
nodes NA ≡ N ∩ (D−DNT) to that of our Geyer saturation
model N .

In the limit of the vanishing effective correlation range
(effected by letting φ → 0) the local structure of the active
secondary network would approach that of N subjected to
independent thinning, with the retention probability depen-
dent on ΔE. However, for larger effective correlation ranges
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Figure 5: The influence of the effective correlation
range of Z on the pair correlation function of active
APs in the energy detection model.

the situation is more complex. The correlations in nearby
values of Z will cause the set D−DNT to consist of typically
several connected components, with distribution of compo-
nent sizes being controlled by the correlation function C(r)
and the parameter ΔE. It is intuitively clear that the result-
ing point process NA should be clustered. A simple method
for confirming this is to estimate the pair correlation func-
tion ξ(r) of NA. It is defined by the joint probability density

dP = ν2
`
1 + ξ(r)

´
dA1 dA2 (12)

of finding one point in each of the two area elements dA1 and
dA2 at distance r apart (ν is the intensity of the locations,
giving the mean number of points per unit area). If the
locations were uniformly random, we would obviously have
ξ(r) ≡ 0. At length scales in which clustering is present, ξ
obtains positive values proportional to the level of clustering
of locations. Figure 5 shows the estimate of ξ(r) for NA for
three different effective ranges, with the clustering induced
by correlations in Z being clearly visible. The high peak at
roughly r = 200m is induced by the typical distance to the
nearest neighboring node in the Geyer model, whereas the
high values of ξ around that point are due to the correlations
in Z.

These correlations are especially significant in scenarios
in which N becomes very dense, since they will heavily in-
fluence the interference and contention statistics in the sec-
ondary network. For a recent interesting asymptotic analysis
of this influence, see [46].

In the power control model the structure of the compo-
nents of D − DSA influence mainly the distribution of the
allowed transmit powers for the active nodes. We shall study
both the influence of the sensitivity threshold θS as well as
the correlation structure of Z on the results. Notice that
since we assume N to be independent of Z, the marginal
distribution of the random field of allowed transmit powers
will also closely reflect the distribution of allowed transmit
powers at the active nodes. Thus we shall only focus on the
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Figure 6: Distribution of the allowed transmit power
for the power control model as a function of θS. The
three horizontal lines of the box correspond to the
median and the 25% and 75% quantiles of the data,
with the whiskers giving the data point at most 1.5
times the interquartile range from the edge of the
box.
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Figure 7: Distribution of the allowed transmit power
for the power control model as a function of the
effective correlation range of Z.

latter in the following. We shall also limit our focus on the
distribution of allowed transmit powers of active nodes, as
opposed to all the nodes of N .

Figure 6 shows the influence of the threshold θS on the
distribution of allowed transmit power. The results clearly
show that even with the relatively large effective correlation
range of 1920 m threshold values below -90 dBm will result
in very low allowed transmit powers. On the other hand
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Figure 8: Distribution of the allowed transmit power
for the power control model for the case of known
primary user receiver positions.

increase in the effective correlation range rapidly increases
the quality of transmit opportunities as shown in Figure 7.
Especially for effective correlation ranges beyond four kilo-
meters, the active secondary nodes would be able to offer
service similar to present-day Wi-Fi hotspots. Of course,
the low median powers are in part due to the extremely
conservative way of estimating the allowed power. Any fur-
ther information on expected distribution of the primary
user receivers would also significantly increase the resulting
transmit powers. A simple illustration of this is shown in
Figure 8, corresponding to optimal power control where pri-
mary receiver locations are assumed to be known, obtained
from a Poisson point process on DSA. Probabilistic models
of user distributions could also be used to achieve similar
effect, albeit with reduced gains.

We shall conclude this section by studying the influence
of the smoothness parameter κ on results. Many of the spa-
tial correlation models used in the wireless communications
community have assumed a simple parametric correlation
model without the possibility to control the smoothness of
the arising sample paths. An example of such a model is
the exponential one proposed by Gudmundson as a model
for correlated shadowing [47], roughly corresponding to the
Matérn model with κ = 1/2. Because of this, there has been
rather few studies on how details, such as the smoothness
of the sample paths, influence the estimates obtained using
these models. The results for our application, shown in Fig-
ure 9, are quite interesting in this regard. We see that even
though the effective correlation range itself is kept constant
at 1920 m, small values of κ result in very small transmit
powers for the secondary network. This is because small
values of κ allow Z to have occasional high variations in
short scales, resulting in small “islands” in DSA to occur,
causing the degradation in allowed transmit powers. The
conclusion to be drawn from this is that care should be ap-
plied to ensure that for any given application also the sample
path behavior of the chosen stochastic model matches that
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Figure 9: Distribution of the allowed transmit power
for the power control model as a function of the
smoothness parameter κ of Z.

of the phenomena being modeled, in addition to correlation
range and variance.

5. ACHIEVABLE CAPACITIES
We shall now move our focus from allowed transmit pow-

ers to capacities. The configuration of the secondary user
transmitters can be described in terms of an activation vec-
tor a ∈ {0, 1}#(X ) for which ai = 1 if the node located at
Xi active. This in turn depends on Xi and the operation
of the selected MAC protocol or scheduling solution. We
then assume that conditional on an activation vector a, the
capacity Cij of the link from Xi to Xj depends on the signal
to interference and noise ratio of the link, given by

SINRij ≡ Pi/Lij

PN + Z(Xj) +
P

k akPk/Lkj
, (13)

where Pi is the transmit power of Xi, Lij is the path loss
from Xi to Xj , PN is noise power, and the summation is
over all the links except the one between Xi and Xj . Since
we are interested in achievable capacity, we adopt the gen-
eralized physical model for which the capacity is estimated
by Shannon’s formula Cij = B log2(1 + SINRij), where B is
the channel bandwidth, and interference is treated as noise.
Alternative choices of capacity metrics are, of course, both
possible and straightforward to introduce into the general
framework used here. We report all capacity results in nor-
malized form (bits per second per Hertz), since for any rea-
sonable choice of B the system never became dominated by
noise.

We focus throughout this section on the secondary net-
work downlink. We assume that around each point of N
there is a Poisson distributed number of clients, with mean
of five clients per node, and their locations are sampled from
a symmetric bivariate normal distribution centered at the
points of N with standard deviation of σ = 25 m. This can
be thought of as a variant of the Thomas point process oc-
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Figure 10: The distribution of achievable downlink
capacity for the energy detection model.
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Figure 11: The distribution of achievable downlink
capacity for the power control model.

casionally used in performance studies [32], but with more
realistic distribution for cluster locations.

Figures 10 and 11 show the distribution of the achievable
capacities, taken over the whole client population. We see
that as expected, the power control model in general be-
haves better, resulting in fewer users being in near-outage,
and enabling overall decent performance. Since the trans-
mit power of the energy detection model is fixed at relatively
high power (20 dBm), some of the clients will have very high
SINR-values and correspondingly high capacity. However,
the small number of active access points leads into poor
overall performance. Figures 12 and 13 show the influence
of the effective correlation range of Z on the results. In-

0
5

10
15

Effective correlation range [m]

A
ch

ie
va

bl
e 

do
w

nl
in

k 
ca

pa
ci

ty
 [ 

bp
s 

/ H
z 

]

Figure 12: The influence of effective correlation
range on achievable downlink capacities for the en-
ergy detection model.
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Figure 13: The influence of effective correlation
range on achievable downlink capacities for the
power control model.

terestingly, increase in correlation range has opposite effects
on the downlink capacity distributions for the energy de-
tection and power control models. This is because with the
power control model the secondary network can increase link
capacities by increasing transmit powers as the correlation
length increases (as was shown in Figure 7), and is also able
to offer service in larger proportion of the overall domain D
(since θE < θS).

The results discussed above are upper limits, since they
assume only one active link in the secondary network. In a
more realistic scenario multiple secondary transmitters will
be active simultaneously, resulting in increased interference
and thereby reduction in capacity. We have also studied



this case in detail, and while the distribution of capacities
does shift lower as more and more nodes become active, the
performance did not degrade severely in any of our simula-
tions, and even with all nodes of N transmitting simultane-
ously the median link capacity was reduced only by approx-
imately 20% (corresponding figures are omitted for space
reasons). This is because of the structure of N which is reg-
ular enough to ensure that the inter-transmitter distances
are typically quite large. For a denser deployment, or in an
ad hoc networking scenario, interference between secondary
users would rapidly become an additional performance bot-
tleneck to the limitations imposed by the primary.

6. CONCLUSIONS
In this paper we have studied in detail the influence of the

spatial structure of the primary network on the performance
characteristics of dynamic spectrum access based networks.
We have also presented simple yet powerful stochastic mod-
eling framework on which our work was based on. Our ex-
periences indicate that Gaussian random fields and Gibbs
point processes fitted to empirical data yield a solid founda-
tion for studying in detail characteristics of DSA networks,
and, more generally, cognitive wireless networks. The re-
sults of our study show clearly that details of the primary
network structure and the level of interference the primary
is ready to tolerate have a major impact on the expected
secondary performance.

The presented work can of course be extended in several
ways. Perhaps the simplest extension would be to consider
multiple independent frequency channels instead of a single
one. This would greatly reduce the outage probability es-
pecially for the energy detection model, and would increase
the overall power budget and the resulting capacity of the
secondary network. Another worthwhile extension would be
to consider more realistic models for the physical and MAC
layers. Understanding the upper performance limits is im-
portant, but should not be the exclusive goal. The most
ambitious extension would finally be to develop a full space-
time version of the presented models, and extend the treat-
ment from one slice of time towards full dynamics of the
primary and secondary networks. The major challenge in
such a work is, in addition to greatly more complex analysis
required, the lack of sufficient empirical data sets on which
models could be constructed on. We have taken some early
steps towards this direction in [21], albeit using a less general
model of the primary network structure as done here.

Finally, we note that the methods applied here have nu-
merous potential applications beyond the cognitive wireless
networks. For example, many of the natural inhomogeneities
in wireless systems, such as uneven distributions of users,
correlated shadowing, or changes in parameters of the prop-
agation environment are amenable to be treated as corre-
lated random fields. Similarly, whenever models of user or
node locations are needed that can be fitted to empirical
location data, Gibbs point processes form a very powerful
tool.
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