
Enabling Run-Time Utility-Based Optimization
through Generic Interfaces in Wireless Networks

Krisakorn Rerkrai, Jad Nasreddine, Janne Riihijärvi, and Petri M̈aḧonen
Institute for Networked Systems, RWTH Aachen University

Kackertstrasse 9, D-52072 Aachen, Germany
Email:{kre,jad,jar,pma}@inets.rwth-aachen.de

Abstract— In this paper we address the use of utility-based
optimization in wireless networks. Our optimization approach is
enabled by well-defined, technology- and platform-independent
generic interfaces. The latter provide an abstract and unified
representation of data and services available from the protocol
stack, ranging from old legacy protocols to newer protocols. In
particular, the application layer abstraction interface enables the
expression of individual application requirements and reconfig-
uration of their tunable parameters. The proposed framework
allows multiple applications, network protocols, and link layer
technologies to coexist and evolve independently of each other.
Therefore, it allows the resource manager to take more efficient
decisions. Moreover, we present the analysis of a practical case
study of utility-based optimization and the generated results. The
source code for the application generic interface has been made
available for public.

I. I NTRODUCTION

The rapid increase in the number of the wireless-enabled
devices and their demands for high-speed multimedia commu-
nications makes the scarce spectrum resources very precious.
Therefore, techniques related to Radio Resource Management
(RRM) [1] that increase the efficiency of the use of ra-
dio resources are crucial for wireless communications. RRM
techniques enable adapting the system to dynamic situations
by controlling radio parameters such as data rates, channel
allocation, and, thus, improve the overall system performance.
The core functionalities of RRM include (a) reconfigurability
that allows adjusting radio parameters at run-time, and (b)
context-aware resource optimization with respect to, e.g.,
delay, throughput, spectrum efficiency, and QoS according to
the end-to-end performance objectives.

In the last decade, cross-layer designs have been considered
as important candidates for solving the problem of resource
optimization since they allow information exchange acrossdif-
ferent layers of the protocol stack [2]. In such frameworks,the
control entity that is responsible of resource management can
build a comprehensive view of the status of the different layers.
However, the interactions between these layers are complex
and have to be performed only through standard interfaces.
Otherwise, we need a structured and generic way to define
such interactions and expose layered data in order to assist
the optimization process. This way, cross-layer optimization
modules could unleash the full use of information that resides
at the various levels of protocol stack. Moreover, wireless
networks can offer better experience to users if they can

express their satisfaction and a way for the network to track
it. One way to do this is to define utility functions that are
specific for applications and users [3]. Further, these utility
functions should be communicated to the resource manager in
order to enable their use in the resource optimization process.
In traditional networks, only standard utilities and policies
can be used by the resource manager, or in the best case
the operator can add new functions and policies. In order
to make the implementation of utilities more flexible and
allow applications to register their utilities at run-time, generic
interfaces should be used between the resource manager and
the applications.

In this context, we have been working on developing
technologies which define standard generic interfaces [4] [5].
These interfaces offer technology-, platform- and protocol-
independent way to access and control data and services avail-
able on the protocol stack. Furthermore, they can assist cross-
layer and utility-based optimization techniques in the RRM.
These generic interfaces are ULLA (Universal Link Layer
API), GENI (Generic Network Interface) and CAPRI (Com-
mon Application Requirement Interface). ULLA abstracts the
link/physical layer while GENI abstracts the transport/network
layer. CAPRI is used to represent application requirementsin
terms of application layer utility that quantitatively expresses
the end-to-end performance objectives.

In a related line of work there have been a lot of work on
utility-based optimization and cross-layer optimizationtech-
niques in wireless networks. In this paper, we show how we
can enhance the performance of the system by putting these
two concepts together. More specifically, we show how we
can exploit CAPRI functionalities in order to develop an opti-
mization framework that allows the implementation of utility-
based and cross-layer optimization for wireless networks.The
major advantages of this approach are seamless data retrieval
that can be used to evaluate various network configurations
and the capability to differentiate between different application
requirements. The former enables cross-layer optimization
while the later facilitates utility-based optimization.

The remainder of this paper is organized as follows. In
Section II we describe the motivation of this paper in more
detail and provide some background. Then we explain the
optimization framework in Section III, and provide an imple-
mentation case study in Section IV. We finally conclude the
paper in Section V.



II. M OTIVATION AND BACKGROUND

In traditional RRM approaches, each layer of the protocol
stack conducts independent optimization processes. Thesepro-
cesses obtain the required data using technology- or protocol-
specific interfaces. Such approaches are obviously not flexible
and cannot be used for implementing general and portable
cross-layered RRM techniques where information from differ-
ent layers are required.

To remedy the situation, various ways to abstract data and
services in the protocol stack for easier access have been
developed. Providing unified and generalized access to data
and services across different layers and protocol entitiesis
normally a key design requirement that enables such efficient
optimization capability. Therefore, standard generic interfaces
can be efficiently used to handle this issue by enabling
seamless communication between protocol entities at different
layers and radio technologies. In addition, these interfaces
allow independent development of hardware and software.
New functionalities of the RRM can be deployed on existing
devices without the need to consult the Original Equipment
Manufacturer (OEM).

In order to obtain the most efficient resource allocation solu-
tions, the RRM needs to have a comprehensive representation
of the environment and protocols’ performance. In particular,
the RRM needs to be aware of the different applications and
their different goals [3]. These goals are normally quantitative
and have to be translated to numerical expressions that can be
understood by the resource manager. One possible techniqueis
to use utility functions as a performance metric to model these
optimization goals. Basically, utility functions combineseveral
network attributes such as throughput or delay into numeri-
cal values depending on particular application requirements.
This approach makes it possible to compare differences in
network configurations and applications expressed by different
utility functions. For instance, a downloading application is a
throughput-sensitive application while a video streamingappli-
cation is typically delay-sensitive. In such cases, applications
can use the generic interfaces to express their optimization
goals which can subsequently be used by the radio resource
optimizer.

A. Generic Interfaces and Abstraction Layers

The concept of generic interfaces for computing platforms
is well-known [6]. Generic interfaces usually describes a set of
functions, parameters and objects, together with technology-
and platform-independent application programming interfaces
(APIs). The goal of these interfaces is to provide a unified
representation of data and/or services available on the protocol
entities. They act as an intermediate layer between the protocol
entities and the control entities as depicted in Fig 1.

Generic interfaces are also used as a solution to the problem
of how to incorporate newer protocol entities to older legacy
protocols. Some vendors may use proprietary solutions by
developing their own interfaces that are most optimized to their
goals. However, these interfaces are typically not well-defined
and only tied to specific vendors, and would not usually be

Utility-based 

Resource 

Optimization

(URO)

Abstraction layer

Layer N API

Layer 2 API

Layer 1 API

Layer N

Layer 2

Layer 1

C, Q, NRAC, AQ, NE

C, Q, NR

C, Q, NR

AC, AQ, NE

AC, AQ, NE
L-1A

L-NA

L-2A

. 
. 
.

. 
. 
.

C = Commands AC = Abstracted Commands L-NA = Layer-N Adapter

Q = Queries AQ = Abstracted Queries AR = Application Requirements

UE = Utility Evaluation NR = Notification Requests NE = Notification Events

OP = Optimized Parameters

Application Layer
Utility 

Management API

UEAR

OPOP

OPOP

OP OP

Fig. 1. Conceptual view of utility-based cross-layer optimization.

fully interoperable with other products. By using a generic
and unified interface, the system allows multiple applications,
network protocols, and link technologies to coexist and evolve
independently of each other.

In this paper we extend and attempt to close the design
gap of the concepts proposed in [7], [8]. Particularly, we do
not only abstract data and services of the low layers of the
protocol stack, but also express application requirementsused
to facilitate the resource management. Further, the framework
design proposed in this paper is platform, operating systemand
protocol independent. We also take into account extensibility
to support future applications, protocols, technologies and
platforms, and as well as interoperability to support various
types of devices with different resource capabilities including
resource limited sensor devices, PDAs, and laptops.

The proposed framework bridges the OSI layers by provid-
ing protocol and application independent abstractions as shown
in Fig. 1. The framework consists of two main parts, namely,
abstraction layer and utility-based resource optimization.

The abstraction layerprovides technology- and protocol-
independent interfaces to synchronously retrieve data (Q), to
support asynchronous notifications (NR) and to deliver control
commands (C). The abstraction layer translates these requests
into abstracted, technology- or protocol-dependent program-
ming primitives (AC, AQ). Moreover, the powerful notification
mechanism can either be event-based once a certain condition
is fulfilled upon network changes, or periodic for updating
layer information at specified intervals. The notification event
(NE) is returned if one of the conditions is met. In case
legacy protocols are deployed, Layer-N Adapter (L-NA) has
to be used to cope with technology-specific ways to retrieve
N-layer information and to provide transparency to the core
of the abstraction layer. Moreover, via the abstraction layer,
reconfiguration of layer parameters with the optimal values
(OP) obtained from the resource optimizer is enabled. Finally,
the utility management API, sitting on top of the abstraction



layer, provides capability of defining optimization goals in
a quantitative manner. For instance, the applications register
individual utility functions through this entity (AR).

The utility-based resource optimization (URO)is basically
an extension of traditional RRM to support utility-based
optimization. It is used to find the optimized parameters of
each layer that maximize applications’ utility value. The URO
uses commands, queries and notifications exposed by the
abstraction layer to retrieve the required information, either
periodically or upon requests from the optimization process,
to perform utility evaluation (UE) via utility management API.

B. Utility function and utility value

Fundamentally, the utility value is a quantitative representa-
tion of the quality of a connection measured at the application
layer. It is used as a performance metric and optimization goal,
and combines several network attributes such as throughput
or delay depending on particular application requirements.
A utility function can be defined as a function of one or
more attribute, depending on application requirements. The
definition of utility function becomes more complicated when
multiple applications are simultaneously running and sharing
the same communication link. In this case, we need an
optimization mechanism that takes into account the system
performance of these application interests.

A suitable solution to this problem is achieved through the
utilization of utility functions that are evaluated based on the
set of various measurable attributes of the connection. This
gives a single real number, representing the utility of the
connection for the application.

However, it is not trivial to combine these requirements into
a single expression that can represent the total utility in order
to perform the optimization process. In particular, we haveto
take into account that several applications can run on the same
link and share resources, while each application can generate
several data flows to/from various destinations/sources. More-
over, we have to consider that data flows may have different
levels of priority that can be set by the administrator of the
network or the user. In order to formulate these relations, we
use the simple weighted sum approach based on objective
weighting as presented in [9]. The weighted sum approach
attempts to maximize the sum of the positively normalized,
weighted, single objective scores of the parameter set solution.
Each application is associated with a utility function thatis
evaluated based on the set of various measurable attributesof
the connection. This gives a single real number, representing
the utility of the connection for the application. Hence, we
define a node utilityŪn by

Ūn =
N
∑

i=1

p(n,i)U (n,i)
app (ai) (1)

whereU (n,i)
app is the utility function of applicationapp repre-

sented by data flowi and running on noden. This application
has a nonnegative priorityp(n,i) (high p(n,i) indicates high
priority). In addition,ai = (ai,1, ..., ai,K) is aK-dimensional

CRM

Abstraction layer

CAPRI

GENI

ULLA

Future ULLA-enabled driver

LLA802 .11 driver

LLA802.15.4 driver

. 
. 

.

LLABluetooth driver

Future GENI-enabled protocol

NLATCP/IP

NLAUDP/IP

. 
. 
.

NLAPSFQ

CAPRI-enabled application

ALADownloading

ALAVideo streaming

. 
. 

.

ALAVoIP
AR UE

AC, AQ, NE

AC, AQ, NE

C, Q, NR

C, Q, NR

OPSOPS

OPSOPS

OPSOPS

Toolbox and

Libraries

Modelling

Decision and 

classification 

algorithms (e.g. 

ML algorithm)

Coordination

Decision 

making

Policies

Utility manager

Flow manager

Knowledge
database

Protocols or services Generic interfaces Optimizer Optimizer’s toolbox

Application Layer

Transport and Network Layer

Link and Physical Layer

Fig. 2. Technical view of the proposed optimization framework.

vector of network attributes characterizing the connection used
by data flowi andN is the number of data flows running on
the node. It should be noted that the summation of priorities
is 1.
U

(n,i)
app is normally defined by the application provider. It can

be a linear combination of separable functions of the different
attributes [10]. It should be noted that our framework can
handle any type of flow utilities but in our implementation
we use a particular separable utility function defined by

U (n,i)
app (ai) =

∑

a∈A

w(n,i)
a u(n,i)

a , (2)

whereu(n,i)
a is a utility function related to attributea from set

A = {a1, ..., aK}, w(n,i)
a is a weighting coefficient ofu(n,i)

a

and
∑

w
(n,i)
a = 1. The definition ofu(n,i)

a and the value of
w

(n,i)
a are application-dependent and can be provided by the

application developer or a third party. These utility functions
are normalized to have values in the range [0,100] in order to
have comparable order of magnitude of the utilities.

III. F RAMEWORK DESIGN

In this paper, we merge the concepts of utility functions and
layer abstraction in Fig. 1 into a realistic and well-structured
optimization framework as shown in Fig. 2. In our approach,
we adopt the Cognitive Resource Manager (CRM) [11], a
cognitive radio extension of traditional RRM approach, to
perform as a core of the URO framework. In this framework,
the CRM enables an implementation of learning mechanisms,
complex control, and cross-layer optimization. These tech-
niques are used to solve the resource management problems, in
particular, in a multi-objective and multi-technology context.
Furthermore, utility-based optimization is in fact a subset of
complex control within the CRM toolbox. The implementation
of the utility-based optimization framework for Microsoft
Visual C++ is available from [5].

A. Components and interfaces

As shown in Fig. 2, the CRM is the core component of our
optimization framework. The CRM has access to all the layers



of the protocol stack (for measurements and settings) via a set
of well-defined APIs, and acts as a cognitive decision-making
unit that performs local and/or global optimization based on
information from the protocol stack, environmental readings
or historical data utilized for learning and modeling.

The most important components of the CRM used in the op-
timization framework are (a) theFlow managerthat provides
information about available wireless adapters, established links
and active flows and also defines interfaces for CRM to change
configuration of adapters, links, and flows; and (b) theUtility
manager that evaluates the utility value for each individ-
ual application and for the node, according to the network
performance data; and (c) theDecision-making component
that estimates the current network performance based on
information from different layers, nodes, and historical data.
This component then tries to identify the cause of problems
and schedules actions to resolve them; and (d)Policy engine
that receives defined policies from the policy server, reasons
on them, and answers user’s queries o spectral usage. The
optional knowledge databasecan be utilized for improving
learning and modeling mechanisms in the CRM toolbox. More
details on the CRM components and implementation can be
found in [12].

In order to optimize radio resources, the toolbox and li-
braries use information that are either stored in the knowledge
database or gathered by the CRM core at run-time through
the generic interfaces, namely ULLA, GENI, and CAPRI. The
ULLA and GENI interfaces allow the CRM to interact with
protocol stacks of different technologies. The CAPRI inter-
face enables applications to express their requir ements and
preferences in terms of network constraints and performance,
which can be subsequently used by the CRM in its utility-
based optimization process. Furthermore, by using information
exposed by these generic interfaces, the proposed framework
allows optimization across multiple layers including physical,
data link, network, transport and application layers. Cross-
layer optimization is performed within the CRM by using the
exposed data from the different layers. Subsequently, a set
of optimized parameters will be configured via ULLA, GENI,
and CAPRI at the corresponding layers. It should be noted that
ULLA, GENI and CAPRI are not dependent on the presence of
CRM. They can be also used with any other resource manager
if the data formats are respected.

To interface CRM with the protocol stack, for legacy
protocols, abstraction layer adapters are required to trans-
late programming primitives into protocol- or device-specific
commands. In particular, the Link Layer Adapter (LLA)
implements the ULLA link provider functions. The Network
Layer Adapter (NLA) implements the GENI network provider
functions. The Application Layer Adapter (ALA) abstracts
away any application-specific details.

B. Specifying utility functions

CAPRI needs a concrete representation of utility func-
tions. Utility functions can be specified in the form: ”reg-
ister utility(flowID, utility functions)” and can be specified

by using mathematical expressions. The syntax consists of
integers and real numbers, typical basic arithmetic operations
(+ for addition,− for subtraction/negation,∗ for multiplica-
tion, / for division, and ˆ for exponentiation), together with
parentheses. Arithmetic functions such as natural logarithm
(log()) and exponential function (exp()) are also included. For
instance, the utility functionlog10 (t+ 1000000) is a valid
utility function for UDP data downloading wheret is the
measured throughput of this UDP flow.

In order to express simple conditions such as step function,
we use the Iverson bracket notation. In this notation, the literal
form [condition] is used, evaluating to1 if the condition is
satisfied and0 otherwise. The conditions can be expressed
using standard expressions such as= (equal to), ! = (not
equal to),< (less than),<= (less than or equal to),> (greater
than),>= (greater than or equal to). Simple parentheses are
also used if more sophisticated conditions need to be formed.
Finally, measured values of different attributes of a flow, like
throughput and delay, are used as the arguments of the utility
function. In the prototype, we uset for throughput,d for delay,
p for packet loss rate, andj for jitter.

For instance, if an application can only accept a maximum
delay of 50 ms, the corresponding utility function can be
presented as a step function,[d <= 0.050].

The application can express this preference by combining
the above specification with the previously mentioned utility
function with different weights, as0.7 log10(t + 1000000) +
0.3[d <= 0.050],.

C. Utility-based optimization

The main objective of the resource management is to opti-
mize the quality of the connections perceived by applications.
For specified flow utility functions for flows running on a node,
the optimization problem is to find a set of parametersx = xopt
such thatŪn is maximized. The optimal set of parameters can
be formally defined as:

xopt = argmax
x∈X

{

∑

i

piU
(n,i)
app

(

ai(x)
)

}

, (3)

wherex is the cross-layer parameter tuple,X is the parameter
space, andxopt is the optimum parameter tuple that maximizes
Ūn.

Each data flowi is associated with a utility functionU (n,i)
app

and a unique flow ID through the CAPRI interface. The utility
is calculated based on network attributes retrieved periodically
from the protocol stack through ULLA and GENI interfaces.
The utility is used as a triggering mechanism for the opti-
mization process. Alternative triggering mechanisms include
changes in spectrum policy, flow priority, or link load. The
utility-based triggering event reflects a change in the quality
of connections as perceived by the CRM. We shall note that
although the utility function is defined by the application,the
utility is not used to maximize individual application needs,
but rather to maximize the node or network performance as
performed by the resource optimizer in the CRM.



Fig. 3 shows how utility-based optimization is realized in
the URO framework.CAPRI-aware applicationsthat explicitly
use the CAPRI interface and link CAPRI library into them,
can register their utility functions directly through CAPRI. On
the other hands, the data flows oflegacy applicationsthat
are not developed with the CAPRI interface and library, are
detected by the flow manager once the applications generate
data traffic. The CRM then automatically registers the newly
detected data flow using predefined utility functions according
to an application type, determined by the network ports the
application is using. The registered utility functions of CAPRI-
aware and legacy applications can be updated at run-time.

The utility managercalculates the utility values based on
the information periodically collected by the CRM through
the generic interfaces. Thedecision enginethen examines the
recent utility and triggers the configuration action if (a)Ūn is
below a certain threshold; or (b) the difference betweenŪn and
moving average utility value is greater than a certain threshold;
or (c) a periodic timer times out. It should be noted that the
moving average threshold is used and periodically updated to
prevent unnecessary activation of event triggering. If oneof
these conditions is met, the decision engine will notify the
action engine. The action engine decides the configuration
actions based on the current environmental conditions and re-
source available. These configuration actions involve network-
layer traffic shaping, link-layer configuration and application-
layer adaptation.

The link-layer configurationdetermines an appropriate ac-
tion, such as channel switching and channel width resizing,
which needs to be performed according to the current en-
vironmental conditions and application needs. For instance,
if the application is a data-rate-hungry one, we may need
to increase the bandwidth. However, if the used channel is
relatively congested, it is better to move the transmissionto
some other channels with lower load. Thenetwork-layer traffic
shapingdetermines the share of bandwidth for each applica-
tion based on given application priorities. Theapplication-
layer adaptationdetermines which CAPRI-aware application
parameters need to be tuned based on application priorities.
As an example of configurable application parameters, we
use data rate and encoding scheme. Link-layer configuration,
network-layer traffic shaping and application-layer adaptation
are performed through ULLA, GENI and CAPRI, respectively.

IV. PRACTICAL CASE STUDY IN IEEE 802.11
TECHNOLOGIES

In this section we shall provide an implementation example
to show how the proposed framework works in practice. The
prototype has been implemented and ported on the IEEE
802.11-based WLANs. We validate the proposed framework
deployed in a real-life scenario by porting two standard
applications for it. The full description of implementation can
be found in [13].

Decision Engine

Utility Manager

Legacy 

Application

CAPRI-aware 

Application

CAPRI

CRM

GENI ULLA

ALA

Action Engine

Application 

Adaptation

Network Traffic 

Shaping

Link 

Configuration

Fig. 3. Utility-based optimization in the CRM framework.

A. Scenario description

We have deployed a prototype setup of four standard note-
books to validate the proposed framework. The test scenario
exploits two applications: UDP video streaming (VLC) [14]
as a legacy application and UDP download application (DL)
as a CAPRI-enabled application. Two users, called Alice and
Bob in the following, are assumed to be within the same radio
range.

The flow of the scenario is as follows. Alice wants to
start downloading some photos from the photo library on her
laptop while still watching the movie through local network.
The video stream has a higher priority than the download-
ing stream. The priority level is set by the home network
administrator, Alice in this case. Afterwards, Bob starts to
synchronize his music folders with the music server. The
spectrum occupancy is rather high due to the fact that Alice
and Bob’s house is surrounded by a lot of wireless networks
and therefore there is only one channel (i.e. the used channel)
available. The main objective is to maximize the video quality
perceived by Alice while Bob’s download stream is running
and sharing the medium.

When all these applications are running, the CRM discovers
that the current link is overloaded. However, after checking
some performance indicators through ULLA and GENI, it
does not detect that there is external interference. The CRM
also knows that the link is already using the maximal channel
width, and thus there is no space to expand. Therefore, it will
re-prioritize the resource assignment to ensure that the high
priority application, VLC, receives sufficient bandwidth.

B. Optimization performance

We define the utility function of the VLC application as
a function of throughput (u(n,i)

t ) and delay (u(n,i)
d ). Video

streaming application is considered as a delay-sensitive appli-
cation. Therefore,w(n,i)

d is set to a higher value of 0.8 while
w

(n,i)
t is set to 0.2, and thusU (n,i)

VLC = 0.2 ·u
(n,i)
t +0.8 ·u

(n,i)
d .



TABLE I

OPTIMIZATION PERFORMANCE.

T1 T2 T3

Change
from T2 to
T3 (%)

Interference low high high

Optimization disabled disabled enabled

d
(Alice)
AVG 7.8 ms 36.5 ms 14.5 ms ↓60%

t
(Alice)
DL, AVG 9 Mbps 6 Mbps 1 Mbps ↓600%

t
(Alice)
VLC, AVG 6 Mbps 3 Mbps 5.5 Mbps ↑250%

t
(Bob)
DL, AVG - 8 Mbps 9 Mbps ↑12.5%

ŪAlice 94 60 95 ↑58

We defineu(n,i)
t by

u
(n,i)
t = 100 ·

log10(min(t, Rmax) + 1000000)− 6

log10(Rmax+ 1000000)− 6
, (4)

andu(n,i)
d by

u
(n,i)
d =











100− 0.4d, if d < 5,

75− 25tanh(d−12.95
5 ), if 5 ≤ d < 25,

57− (0.264d), if 25 ≤ d < 215

(5)

wheret is a throughput measured in bits/s,d is delay measured
in milliseconds and maximum allowed data rateRmax can
be defined by the application when registering to CAPRI or
adjusted during run-time by the CRM through CAPRI. In our
settings, we consider thatRmax = 9 Mbps at the beginning.

The DL application is considered as a function of through-
put U (n,i)

DL = u
(n,i)
t only. From (1), we compute the node

utilities perceived by Alice and Bob as̄UAlice = 2
3U

(Alice,1)
VLC +

1
3U

(Alice,2)
DL and ŪBob = U

(Bob,1)
DL .

The utility functions used in this example are modified
versions of functions in [15] so that the weighting coefficients
and thresholds are suitable for our prototype. In this scenario,
we consider that VLC has a higher priority than DL. First,
Alice starts VLC and DL. Thereafter, at timeT1 Bob starts
his download stream. The optimization is triggered at time
T2. Table I shows that when Bob starts his application the
average delaydAVG is almost four times higher than before,
causing some glitches on Alice’s video and degradation of
Alice’s node utility. However, when the optimization process
is applied, the maximum allowed data rate of Alice’s DL is
lowered from 6 Mbps to 1 Mbps, resulting in lower delay and
higher data rate in Alice’s VLC and Bob’s DL. Additionally,
Alice’s node utility increases by 58%. Alice is unaware of
this action, although she notices that her downloading stream
is somewhat slower. Alice is now satisfied as the movie is
running smoothly again after a short period of degradation.

V. CONCLUSIONS ANDFUTURE WORK

In this paper we have presented a utility-based optimization
framework for wireless networks that enables cross-layer op-
timization at run-time through well-defined generic interfaces.

In particular, the proposed framework allows (a) the resource
optimizer to seamlessly retrieve data and services via ULLA
and GENI interfaces; (b) the applications to express their re-
quirements by specifying different utility functions via CAPRI
interface; and (c) the utility-based resource optimization to
use information from all OSI layers to maximize the network
utilization across multiple layers. The optimized parameters
are reconfigured in the protocol stack via ULLA, GENI and
CAPRI interfaces.

We have validated the prototype implementation of the
proposed framework in a real-life scenario on the Windows
platform. The results have shown that the proposed framework
maximizes the network utilization in a non-cooperative net-
work by reconfiguring the parameters according to the decision
made by the optimization process. The implementation of the
proposed framework for Microsoft Visual C++ is available
from [5].

ACKNOWLEDGMENT

The authors thank the RWTH Aachen University and the
German Research Foundation (Deutsche Forschungsgemein-
schaft, DFG) for providing financial support through the
UMIC research center. We also thank the European Union
for providing partial funding through the FARAMIR project.

REFERENCES

[1] J. Zander, “Radio resource management in future wireless networks: Re-
quirements and limitations,”Communications Magazine, IEEE, vol. 35,
no. 8, pp. 30 –36, aug 1997.

[2] E. Hossain, D. Niyato, and Z. Han,Dynamic spectrum access and
management in cognitive radio networks. Cambridge U. Press, 2009.

[3] S. Shenker, “Fundamental design issues for the future internet,” IEEE
Journal on Selected Areas in Communications, vol. 13, no. 7, pp. 1176
–1188, Sep. 1995.

[4] GOLLUM project, http://www.ist-gollum.org, last visited 30/04/2011.
[5] ARAGORN project, http://www.ict-aragorn.eu, last visited 30/04/2011.
[6] A. T. Campbell, H. G. De Meer, M. E. Kounavis, K. Miki, J. B. Vicente,

and D. Villela, “A survey of programmable networks,”SIGCOMM
Comput. Commun. Rev., vol. 29, pp. 7–23, April 1999.

[7] J. Riihijärvi, M. Wellens, and P. M̈aḧonen, “Link-layer abstractions for
utility-based optimization in cognitive wireless networks,” in Interna-
tional Conference on Cognitive Radio Oriented Wireless Networks and
Communications (CROWNCOM), 2006.

[8] S. Khan, Y. Peng, E. Steinbach, M. Sgroi, and W. Kellerer,“Application-
driven cross-layer optimization for video streaming over wireless net-
works,” in IEEE Communications Magazine, vol. 44, no. 1, Jan. 2006.

[9] C. Fonseca and P. Fleming, “Multi-objective optimizationand multiple
constraint handling with evolutionary algorithms - I: A unified formu-
lation,” IEEE Transactions on Systems, Man and Cybernetics, 1998.

[10] C. L. Hwang and A. S. M. Masud,Multiple Objective Decision Making
Methods and Applications. Springer-Verlag, 1979.

[11] P. Mäḧonen, M. Petrova, J. Riihijärvi, and M. Wellens, “Cognitive
wireless networks: your network just became a teenager,” inProceedings
of the 25th Conference on Computer Communications, 2006.

[12] E. Meshkovaet al., “Using cognitive radio principles for wireless
resource management in home networking,” inIEEE Consumer Com-
munications and Networking Conference (CCNC 2011), USA, 2011.

[13] K. Rerkrai, J. Nasreddine, Z. Wang, J. Riihijärvi, and P. M̈aḧonen, “De-
sign and Implementation of Utility-Based Radio Resource Optimization
Using CAPRI,” in International Wireless Communications and Mobile
Computing Conference (IWCMC), 2011.

[14] Video LAN project, http://www.videolan.org/vlc, last visited 30/04/2011.
[15] C. Boutremans and J.-Y. Le Boudec, “Adaptive delay awareerror control

for internet telephony,” inProc. of 2nd IP-Telephony Workshop, 2001.


