
Design and Implementation of Utility-Based Radio
Resource Optimization Using CAPRI

Krisakorn Rerkrai⋆, Jad Nasreddine⋆, Zhou Wang†, Janne Riihijärvi⋆, and Petri Mähönen⋆
⋆ Institute for Networked Systems, RWTH Aachen University, Germany

† European Microsoft Innovation Centre, Germany
Email:{kre}@inets.rwth-aachen.de

Abstract— In this paper we introduce a utility-based
optimization approach for wireless communication based on
developed Common Application Requirement Interface (CAPRI).
The proposed system allows applications to register their utility
functions to a radio resource controller at run-time and in
automatic way. This enables the implementation of utility-based
optimization and run-time reconfiguration of applications.
Specifically, in contrast to traditional utility-based optimization
approaches that usually aim at optimizing a single application
deployed for the entire system, our approach aims to generalize
and express the requirements of multiple applications. To
validate our proposed system, we have implemented a prototype
of CAPRI using Windows platform. The implementation has
been made publicly available under an open source license. We
show that the overhead induced by the adoption of the CAPRI
framework in terms of memory and processing requirements is
small, and additional latencies induced by the framework are
negligible. Further, a practical case study of multi-application
utility-based optimization has been addressed and the results
have been analyzed.

Keywords—Utility-based optimization, cognitive wireless
networks, radio resource management

I. INTRODUCTION

The resource management in wireless communications is a
crucial task due to the fact that the radio environment is very
hostile in terms of fast and unpredictable changes, uncontrol-
lable interference and scarcity of resources. The radio resource
management has become more and more sophisticated in
wireless systems. During the last decade research community
has started to consider also increasingly, and complex cross-
layer optimization methods as a part of resource management.

We have earlier proposed in the context of cognitive radios
a new architecture for self-optimizing wireless systems. The
key aspect in this architecture is Cognitive Resource Manager
(CRM) framework [1], [2] that is a cognitive radio extension
of traditional Radio Resource Managers (RRM). Through
the principles of modularity, run-time reconfigurability, open
interfaces and open policy language, the CRM framework
enables an easy implementation of cross-layer optimization,
complex control and learning mechanisms.

A high level architecture of the CRM framework [3] is
depicted in Fig. 1. In this framework the toolboxes and
libraries provide a collection of algorithms, components and

Fig. 1. CRM architecture

tools that can be used to optimize the resources while sat-
isfying application requirements. In order to enhance system
performance, the toolboxes and libraries use the knowledge
database that stores the acquired long-term and short-term in-
formation from the environment and the network. In addition,
a policy layer is used to manage the rules and policies set by
different stakeholders and resolve any conflict between them.
The managed policies are not only regulatory policies (e.g.
spectrum use rules) but can also be user preferences, device
manufacturer configurations, and operator specific policies.

The CRM core acts as the kernel component of the system
that facilitates the construction and the management of all the
above mentioned components and their interactions with the
environment and the protocol stack. The interaction of the
CRM and its components with the protocol stack is enabled
by the integration of open interfaces that facilitate also the
implementation of cross-layer and utility-based optimization
techniques. These interfaces are ULLA (Universal Link Layer
APIs) [4], GENI (Generic Network Interface) and CAPRI
(Common Application Requirement Interface) [5], [6]. ULLA
is used for interaction with the link/physical layer, GENI
for interaction with the transport/network layer and CAPRI
for interaction with the application layer. In this paper we
focus on explaining the use of CAPRI to enable utility based
optimization. We report specifically on the CAPRI reference
implementation in Windows OS and analyze its performance.

The remainder of this paper is organized as follows. We
discuss the motivation of our work in Section II. In Section III

978-1-4577-9538-2/11/$26.00 ©2011 IEEE 2262

we describe the CAPRI framework architecture, implementa-
tion and performance evaluation. Later we discuss how our
optimization algorithm works in Section IV. We then provide
a practical example in Section V. We finally conclude the
paper in Section VI.

II. ENABLING MULTI-APPLICATION UTILITY-BASED
OPTIMIZATION

The success of wireless communication in attracting a wide
range of users has motivated the companies to develop a
plethora of applications that have different characteristics.
Therefore, these applications have different requirements on
low-level parameters of the protocol stack such as delay,
throughput, and jitter. For instance, VoIP applications have
tight requirements on delay and packet error rate whereas
streaming applications are more sensitive to jitter. However,
the actual implementations of RRM do not take into ac-
count this diversity directly or provide a set of predefined
requirements (e.g. UMTS QoS classes) since there is no
interface that allows the applications and individual flows to
express dynamically and more precisely their requirements and
preferences in terms of network constraints and performance.
A solution for this problem is to define an API that registers
the different applications together with their utility functions in
the entity responsible of performing the resource management.
In this context, CAPRI is proposed as an interface between the
CRM core and the application layer to allow applications to
register and update their requirements and preferences in terms
of network constraints and performance. This way, we are not
bounded by any specific preferences, as we have functional
descriptions within the architecture. In addition, when CAPRI
is enabled, it allows also the resource manager to control some
tunable parameters of the applications. The integration of this
interface in the CRM framework will allow the implementation
of utility- and policy-based optimization techniques. It should
be noted that CAPRI is not dependent on the presence of
CRM. It can be also used with any other resource manager if
the data format is respected.

To the best of our knowledge, most of the practical works
on utility-based optimization have focused on solving the
optimization problem for a single application or considered a
single requirement for the whole system [7], [8]. In contrast,
our approach based on the proposed CAPRI framework, tries
to generalize and express the application requirements to
the network. The proposed approach can be used to solve
a multi-objective optimization problem. However, it is not
trivial to combine these requirements into a single expression
which can represent the total utility in order to perform the
optimization process. In particular, we take into account that
several applications can run on the same link and share re-
sources, while each application can generate several data flows
to/from various destinations/sources. Moreover, we consider
that data flows have different levels of priority that can be
set by the administrator of the network or the user. In order
to formulate this relation, we use a simple weighted sum
approach based on objective weighting presented in [9]. The

weighted sum approach attempts to maximize the sum of the
positively normalized, weighted, single objective scores of the
parameter set solution. Hence, we define a node utility Unode

by prioritizing the data flows:

Unode =

N∑
i=1

pi · Uflow,i(ai), (1)

where Uflow,i is the utility function of data flow i having
a nonnegative priority pi (high pi for high priority), ai =
(ai,1, ..., ai,K) is a K-dimensional vector of network attributes
characterizing a connection used by flow i and N is the
number of data flows running on the node. It should be noted
that the summation of priorities is one.

Similar to Unode and as an illustrative example, we use
in our implementation a particular separable utility function
defined by

Uflow,i =

K∑
j=1

wi,j · Ui,j(ai,j), (2)

where Ui,j(ai,j) is a utility function related to a set of network
attributes ai,j , wi,j is a weighting coefficient of Ui,j and∑K

j=1 wi,j = 1. The definition of Ui,j and the value of
wi,j are application-dependent and can be provided by the
application developer or a third party. These utility functions
are normalized to have values in the range [0,100]. As a result,
the flow utility value is in the same range of [0,100] so that
each flow has the same range making any comparison between
flow utilities possible.

In typical optimization problems, the resource manager at-
tempts to perform optimizations at physical, MAC, or transport
layer, or to perform optimizing across multiple layers. Nev-
ertheless, in some circumstances the optimizers are bounded
with physical conditions and cannot perform optimizations
in those layers. For example, when a wireless device is sur-
rounded with many other wireless devices, it is impossible or
nearly impossible to switch to another channel that is occupied
by other wireless devices due to high interference. The other
alternatives like increasing the channel width are also not
appropriate in such a situation due to the interference that can
be generated in this case. Alternatively, the optimization can be
done at the application level by tuning application parameters
during run-time.

There are several methods to change the configurations of
the applications. For instance, adaptive video streaming ap-
plications like dynamic streaming in Adobe Flash Player [10]
and IIS Smooth Streaming for Microsoft Silverlight [11] vary
video quality and packet sizes during playback so that the
available bandwidth and local CPU processing power can
support. However, all the existing methods are implemented
independently in the application itself and do not have full
knowledge on network and radio resource utilization and
tradeoffs. This might lead to suboptimal solution since the
two optimizers work independently. Therefore, we argue that
the use of CAPRI will enhance the performance of the system
since it allows information exchange between the applications
and the resource manager.

2263

CAPRI

Configuration

Database

CRM

re
g
is

te
rU

ti
lit

y
()

evaluateUtility()

getUtility()

Application Layer

Adapter

Utility Evaluator

lo
g

ic
a
l
u
ti
lit

y

re
g

is
tr

a
ti
o

n

[p
h
y
s
ic

a
l
u

ti
lit

y
 r

e
g

is
tr

a
ti
o

n
]

removeFlow()

Legacy

Application

u
p

d
a
te

U
ti
lit

y
()

s
e

tA
tt

ri
b

u
te

()

o
n

N
e

w
F

lo
w

()

CAPRI – aware

Application

CAPRI Core

Fig. 2. Implementation architecture of the CAPRI framework.

III. SYSTEM ARCHITECTURE AND IMPLEMENTATION

A. CAPRI framework: design and implementation

The Common Application Requirement Interface (CAPRI)
enables applications to express their requirements and prefer-
ences in terms of network constraints and performance, which
can be subsequently used by the resource manager in their
utility-based optimization process. In addition, CAPRI allows
applications to update their requirements during runtime. By
using CAPRI, the application performance can be assessed
through the computation of utility functions. Each application
is associated with a utility function that is communicated to the
CRM through CAPRI and that specifies how its performance
should be evaluated.

The architecture of CAPRI framework is depicted in Fig. 2.
The framework includes CAPRI Core, an Application Layer
Adapter (ALA), a database, and a utility evaluator. The
main component is CAPRI Core. Its functionality includes
parsing utility functions, processing and sending commands
from/to applications and CRM, registering and deregistering
applications, and parsing the configuration. The role of ALA
is to inspect all the new data flows detected by CRM in
order to seamlessly adapt legacy applications to fit within the
CRM framework by abstracting away any application specific
details. The utility evaluator is the component responsible of
computing the utility values of the different applications based
on the instantaneous attributes provided by the CRM and the
registered utility functions through CAPRI Core.

The CAPRI Core provides two ways for applications to
register and update utility functions.

• CAPRI-aware applications can register themselves
through the CAPRI Core. However, the registration will
be completed once the actual data flow is detected by
CRM and then ALA indicates the flow information to the
CAPRI Core. Moreover, the CAPRI Core also provides to

Utility Function

U = t · log10 (2·d)

expression

name

t => throughput

name

d => delay

function

log10(2*d)

operation

·

U =

expression

expression

number

2

operation

·

Fig. 3. Evaluation tree construction.

these applications commands that are used to update util-
ity functions and to configure some application attributes
such as maximum allowable bandwidth and application
level options.

• Legacy applications that are not developed with a CAPRI
interface and library, can be automatically registered
by CRM by loading predefined utility functions from
a configuration file according to an application type.
Currently, the application type is determined by network
ports an application is using. This operation is performed
within ALA. The utility functions of legacy applications
can be updated by overwriting the utility functions in the
configuration file. The CAPRI Core will be notified if the
configuration file has been modified.

B. Utility evaluation

In CAPRI, the utility function is parsed by using
lex/yacc [12] to build a utility evaluation tree. The parser
applies the scalar expression rules defined in the language
repeatedly. This way, yacc can parse recursive rules very
efficiently. For example, Fig. 3 shows how to parse a specific
utility function defined by U = t · log(2 · d). Naturally, a yacc
parser does not construct this tree as a data structure. Instead,
we have to dynamically allocate memory for each constructed
vertex in the tree. The tree is constructed bottom-up. There are
three possible vertex patterns, which include a value (number),
an attribute (name) and an operator. Functions, such as log() or
exp(), are processed as an operator with one input parameter.
After the tree is built, it is stored in the database together
with a corresponding flow identifier (FID) consisting of five
attributes: protocol, IP address, source address, destination
address, transport source port and transport destination port.
C++ STL map container is used to map a given FID to a
parsed utility tree.

The utility evaluator evaluates utility functions based on the
information collected by the CRM. When evaluateUtility() is
called by CRM, the utility evaluator uses the FID as a key
to find the associated evaluation tree. Utility evaluation is
fundamentally a reverse ordering of a constructed tree. The

2264

originally allocated vertices are visited first. This results in
operations being applied in the order that they were encoun-
tered during parsing. We also apply recursive rules with the
tree reconstruction. If a vertex type is TYPE VALUE, then
it returns a value. If a vertex type is TYPE ATTRIBUTE,
then it returns a mapped value of a given attribute. If a vertex
type is TYPE OPERATION, it will recursively call a function
evaluateUtility() in order to retrieve values of the operands.

To evaluate application performance, CRM calls evaluateU-
tility() by providing FID together with attribute values. The
utility evaluator in the CAPRI framework finds the utility
tree from utility table using the FID. Then it computes Uflow

by considering different network performance indicators like
delay (d), throughout (t), packet loss (l) and jitter (j), and
their weights that are provided by the application. Using (2)
this flow utility can be written as

Uflow = wt ·Ut(t)+wl ·Ul(l)+wd ·Ud(d)+wj ·Uj(j), (3)

where Ut(t), Ul(l), Ud(d), and Uj(j) are utility functions
of throughput, packet loss, delay, and jitter, respectively
whereas wt, wl, wd, and wj are the weighting coefficients of
throughput, packet loss, delay and jitter, respectively. These
coefficients satisfy the relation wt + wl + wd + wj = 1.

C. Interaction with CRM

This subsection explains how CRM interacts with the com-
ponents in the CAPRI framework. For legacy applications,
once CRM gets a notification from the protocol stack about a
new flow created by an application, it then notifies the ALA
together with the FID. The ALA loads a utility function from
the configuration file based on the application type. Then it
registers the utility function to the CAPRI Core. The ALA
uses the application type to assign the corresponding utility
function to the new flow. The default utility functions of
legacy applications are defined in a configuration file, as the
application is not aware of CAPRI. The utility function can
be updated and automatically reloaded when the configuration
file is modified. The CAPRI Core parses the utility function
and constructs a utility tree, which is stored in the CAPRI
database together with the identifier of the flow.

For CAPRI-aware applications, the application first registers
its utility function. At the beginning, an FID of the newly reg-
istered application is not yet complete. It has only destination
port, destination address, and protocol type. It does not have
the full information until the actual data flow is initiated. Upon
first data packet detection, the CRM notifies the ALA that a
new flow is detected. The ALA checks if the destination port,
destination address, and protocol type of the newly detected
flow match with the recently registered incomplete FID in the
database. If these parameters match with an existing entry in
the database, the CAPRI Core will update that entry with an
FID detected and notified from the CRM.

D. Performance evaluation

This subsection presents the evaluation of CAPRI frame-
work implementation in terms of memory footprint and utility

1 2 3 4

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

A
ve

ra
g
e
 p

ro
ce

ss
in

g
 d

u
ra

tio
n
 (
µ
s)

Number of attributes

 simple utility functions
 logarithmic utility functions
 complex utility functions

Fig. 4. Average processing duration of a single utility function.

evaluation duration in order to explore the tradeoff between
flexibility and cost of implementation in terms of complex-
ity and performance. The prototyping platform is based on
two standard notebooks using an Intel Core2Duo clocked
at 2.20 GHz and 2.0 GB of RAM. Altogether, the CAPRI Core,
ALA, Database and CAPRI parser represent a static memory
occupation of less than 3.5 MB. It should be noted that more
than 60% of the memory is occupied by the use of C++ STL
map container. Alternative techniques can be used to reduce
the memory consumption.

We measured the utility evaluation duration for a single
standard evaluateUtility() call. Several degrees of complex-
ity of utility functions were also experimented. The results
have shown that the average utility evaluation duration is
around 65µs including the time used to retrieve data from the
driver. However, the latency introduced by parsing the utility
functions is very low as shown in Fig. 4 where we measured
the utility processing duration for a single standard evalua-
teUtility() call calculating a utility value with different number
of attributes and different levels of complexity. We repeated
the function call 1000 times for each trial. For example, when
evaluating only one attribute the average evaluation duration is
around 3.8µs for a simple utility function, 4.0µs for a utility
function with a logarithmic function, and 4.5µs for a complex
utility function (with conditions and adjustable parameters).
Therefore, the latency introduced by the CAPRI framework is
acceptable for most of RRM technologies that do not require
very fast decision making. As we can see this processing time
is negligible compared to the total utility evaluation utility
or the time needed to retrieve data. The latter, which is the
order of tens of microseconds, is independent of the number
of requested attributes.

IV. OPTIMIZATION ALGORITHM

Our resource optimizer determines the configuration actions
based on utility values obtained from the utility evaluator. In
this type of optimizers, the decision is usually not made imme-
diately after the utility value drops. Instead, it is made when
several consecutive conditions are met. This is so called late
decision making. In principle, this is used to avoid transient

2265

events that may occur and degrade Unode for a short period of
time. For example, a short burst of high CPU processing load
may affect data transmission from the video streaming server.

The proposed optimization process at the application level
is triggered if one of the following conditions is fulfilled.

• Unode is lower than a utility threshold (Unode < TUtility),
where TUtility is an adaptive threshold over time, i.e.
it changes a new value, which may be higher or lower,
depending on changes of environmental conditions. In
other words, this is a relative threshold at a particular
time that reflects the actual environmental conditions. If
the environmental conditions become worse, then TUtility

gets lower, and vice versa.
• The difference between Unode and moving average utility

value is greater than a given utility difference threshold
(|Unode − Uavg| > TUtilityDiff). If the difference is
positive, then the optimizer should check if the resource
can be optimized while keeping the current utility high. If
the difference is negative, then the optimizer should find a
solution to tune link parameters or application parameters.
As a result, TUtility will be updated with a new value.

• The periodic timer times out. We use a watchdog mecha-
nism to periodically check if the environmental conditions
change over time. For instance, when we start an appli-
cation, the optimizer tries to optimize the system with
the best configuration to maximize Unode. After a certain
time, Unode is still constant even if the environmental
conditions improve. For instance, after a neighbor turns
off its wireless devices, the adjacent channels are free
to use. Without the watchdog, the optimizer is never
triggered by the previous two conditions alone.

TUtility is updated to prevent frequent and unnecessary
activation of the CRM decision mechanisms. For instance, if
the environment conditions are bad for a long time but there
is no better configuration than the actual one that leads to a
utility lower than the threshold, the decision mechanisms will
be activated very frequently and will take the same decision all
the time. Therefore, by using the dynamic threshold, the CRM
monitors the utility values and actions that have been taken,
and sees if the utility is lower than the threshold while the
CRM does not find a better solution. In this case the threshold
will be lowered to prevent the frequent and unnecessary
activation of the CRM. When the utility value starts to increase
due to changes in the channel conditions or after the CRM
finds new solutions, the threshold will be increased again to
guarantee the best functionality of the system.

V. A PRACTICAL CASE STUDY

We shall give a simple example to show how the proposed
algorithm works in practice. We have two applications in
this example scenario: UDP video streaming (VLC) [13] as
a legacy application and UDP download application (DL)
as a CAPRI-aware application. The utility functions used in
this example have been modified from [14] in order that
the weighting coefficients and thresholds are suitable for our
prototype. In our example we assume that VLC has higher

priority than DL. This can be for instance due to the fact that
the user prefers to give higher priorities to video streaming and
therefore set the priorities accordingly. The following utility
function is a utility function used for the DL application.

UDL = 100 · log10(min(t, BWmax) + 1000000)− 6

log10(BWmax + 1000000)− 6
, (4)

where t is a throughput measured in bit/s and BWmax can
be defined by the application when registering to the CAPRI
Core. Alternatively, BWmax can be adjusted during run-time
by the CRM through the setAttribute() function.

The following utility functions is a utility function used for
the VLC application.

UV LC =0.2 ∗
{
100 · log10(t+ 1000000)− 6

1.491362

}
+ 0.8 ∗ {(100− 0.4 · d) · [d < 5]

+ 75− 25 · tanh(d− 12.95

5
) · [5 ≤ d < 25]

+(57− (d · 0.264)) · [25 ≤ d < 215]} ,

(5)

where d is a delay measured in milliseconds.
To run the experiment, we perform the following steps:
1) Start VLC streaming at around 6 Mbps.
2) Start DL with BWmax of 9 Mpbs while VLC is still

running.
3) Start the channel interferer (i.e. another notebook run-

ning DL on the same channel) with BWmax of 10 Mbps
while both applications are running.

4) Enable the optimizer.
5) Remove the channel interferer.
As it can be seen in Fig. 5 Unode drops slightly when

we run both applications at the same time. The user can
see some glitches on his movie. Then, a channel interferer
is turned on and the utility values of both applications de-
crease drastically. In particular, VLC noticeably suffers from
significant delay between video frames as depicted in Fig. 6.
Also, DL experiences high throughput drop (see Fig. 7). After
enabling the optimizer it notices this degradation from Unode.
It then tries to see if there is a solution using optimization
at the link layer or network layer. If it finds out that the
other channels are so congested or reserved by the policy
server which is the case here, it will try to tune application
parameters according to their priorities. In particular, high
priority applications like video streaming will get enough
bandwidth while low priority applications have to sacrifice
their bandwidth utilization. This is reflected in the node utility
computation, in which the high priority application has a larger
weighting coefficient than that of low priority applications.
Specifically, The optimizer gradually tunes down BWmax of
DL, resulting in lower delay in VLC and therefore higher
flow utility value. It should be noted that the utility value
of DL increases although BWmax is lowered. It is due to
the fact that the utility value is realized from the optimizer
perspective instead of user’s perspective. In other words, the
optimizer tries to maximize the network utilization by giving

2266

0 100 200 300 400 500 600 700 800

20

30

40

50

60

70

80

90

100

No interference +
optimization

Interference +
optimizationInterference

VLC +

DL
U

til
ity

 p
e
rc

e
n
ta

g
e

Time (s)

 U
DL

 U
VLC

 U
node

VLC

Fig. 5. The evolution of the utility values over
time.

0 100 200 300 400 500 600 700 800

0

20

40

60

80

100

120

140

160

2.114.536.57.8

D
e
la

y
(

)

Time (s)

 Delay
 Average delay

1.3

VLC VLC +

DL
Interference

Interference +
optimization

No interference +
optimization

m
s

Fig. 6. The evolution of delay over time.

0 100 200 300 400 500 600 700 800

0

2

4

6

8

10

T
h
ro

u
g
h
p
u
t
(M

b
p
s)

Time (s)

 DL

 BW
max

 of DL

 VLC

VLC
VLC +

DL
Interference Interference +

optimization
No interference +
optimization

Fig. 7. The evolution of throughput over time.

more resources to high priority applications. Thereafter, some
tuning steps have been performed. The video streaming again
runs smoothly as shown in Fig.5. During the time between
550 and 620 seconds, we can observe several pulses from the
DL application. This is due to the fact that after a certain time
the watchdog timer is fired and then triggers the optimizer.
Hence, the optimizer rapidly tries to increase BWmax of DL.
Nevertheless, during the presence of interference, this change
makes a sudden drop of utility value. As a result, the optimizer
has to quickly tune down BWmax of DL. Finally, we remove
the channel interferer. The optimizer sequentially increases
BWmax and checks the resulting utility in order to improve
the overall system performance.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have presented the design and imple-
mentation of utility-based optimization approach for wireless
communication using CAPRI. The proposed system allows
applications to express their requirements by registering their
utility functions to a radio resource controller at run-time
and in automatic way. In addition, we have shown that the
system can potentially be employed to tune the application
parameters in order to maximize network utilization. This is
crucial especially in some circumstances when optimizer is
limited with physical conditions where typical optimization
cannot be used.

We have implemented a prototype for Windows/Visual C++.
The utility evaluation duration tests show that introducing the
CAPRI framework does not add considerable overhead and
that the use of CAPRI framework for applications with soft
real-time requirements is reasonable. The memory footprint
tests also indicate that the CAPRI framework can be used
on a notebook with limited memory resources. Additionally,
we have addressed multi-application utility-based optimization
through a practical case study. The results have shown that the
proposed system maximizes network utilization and allocates
the network resources according to the application priorities.

Our future work aims at performing a cross-layer opti-
mization strategy that jointly optimizes the application layer,
network layer, data link layer, and physical layer of the

protocol stack using the proposed utility-based optimization
algorithm. The implementation of CAPRI framework for Mi-
crosoft Visual C++ is available from [15].

ACKNOWLEDGMENT

The authors would like to thank the RWTH Aachen
University and the German Research Foundation (Deutsche
Forschungsgemeinschaft, DFG) for providing financial support
through the UMIC research center. We would also like to thank
the European Union for providing partial funding of this work
through the ARAGORN and FARAMIR project.

REFERENCES

[1] P. Mähönen, M. Petrova, J. Riihijärvi, and M. Wellens, “Cognitive
wireless networks: your network just became a teenager,” in Proceedings
of the 25th Conference on Computer Communications, 2006, pp. 23–29.

[2] M. Petrova and P. Mähönen, Cognitive Resource Manager: A cross-layer
architecture for implementing Cognitive Radio Networks. Cognitive
Wireless Networks (eds. Fittzek, F. and Katz, M.), Springer, 2007.

[3] EC FP7-216856 ARAGORN Project, Deliverable D2.4: Final System
Architecture, http://www.ict-aragorn.eu, last visited 04/04/2011.

[4] M. Sooriyabandara et al., “Unified Link Layer API: A generic and open
API to manage wireless media access,” Computer Communications,
vol. 31, no. 5, 2008.

[5] J. Riihijärvi, M. Petrova, and P. Mähönen, “A Common Application
Requirement Interface for Cognitive Wireless Networks,” in in Proc. of
4th IEEE Workshop on Networking Technologies for SDR Networks in
conjunction with SECON 2009, Rome, Italy, 2009.

[6] J. Riihijärvi, M. Petrova, V. Atanasovski, and L. Gavrilovska, “Extending
Policy Languages with Utility and Prioritization Knowledge: The CAPRI
Approach,” in Proc. of IEEE DySPAN, 2010.

[7] S. Khan, Y. Peng, E. Steinbach, M. Sgroi, and W. Kellerer, “Application-
driven cross-layer optimization for video streaming over wireless net-
works,” in IEEE Communications Magazine, vol. 44, no. 1, Jan. 2006.

[8] M. Ibnkahla, Adaptation and Cross Layer Design in Wireless Networks.
CRC Press, 2008.

[9] C. Fonseca and P. Fleming, “Multi-objective optimization and multiple
constraint handling with evolutionary algorithms - I: A unified formu-
lation,” IEEE Transactions on Systems, Man and Cybernetics, 1998.

[10] Adobe Flash Player, http://www.adobe.com/products/flashplayer, last
visited 04/04/2011.

[11] IIS Smooth Streaming for Microsoft Silverlight, http://www.iis.net/
download/smoothstreaming, last visited 04/04/2011.

[12] J. Levine, T. Mason, and D. Brown, “lex&yacc.” O’Reilly Media, 1995.
[13] Video LAN project, http://www.videolan.org/vlc, last visited 04/04/2011.
[14] C. Boutremans and J.-Y. Le Boudec, “Adaptive delay aware error control

for internet telephony,” in Proc. of 2nd IP-Telephony Workshop, 2001,
pp. 81–92.

[15] ARAGORN project, http://www.ict-aragorn.eu, last visited 04/04/2011.

2267

