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Abstract—There is an increasing interest in developing older
adult fall-risk prediction models that can be used as a preventive
approach to predict future risk of falling in the elderly community.
This study’s primary objective is to implement and compare
supervised machine-learning methods to classify elderly subjects
as fallers or non-fallers. Features used for building the models
were extracted from the pressure signals of the innersoles of
520 elderly people who reported whether they had experienced
previous falls or not. Two different types of feature sets were
used as inputs to the classification models and were compared.
The first feature set includes ten time-domain features, while the
second set includes a single cyclostationary property, which is the
degree of cyclostationarity of the average walk pressure signal.
Our study showed that the use of the degree of cyclostationarity
as a single feature improved the model prediction accuracy by
6.58%, compared to the use of the time-domain features. The
results obtained prove that cyclostationary features are essential
features for the development of classification models for identifying
fallers in the elderly community.

Index Terms—ANOVA, classification models, cyclostationarity,
degree of cyclostationarity, elderly people, fallers, machine learn-
ing, walk pressure signals

I. INTRODUCTION

According to the World Health Organization’s (WHO) facts
sheet updated in January 2018, falls are considered the primary
cause of accidental injuries leading up to deaths [1]. The
WHO defines the case of falling as an event that results in
an individual becoming at rest inadvertently on the ground,
floor, or other lower levels. In some cases, injuries that are
caused by falls could be fatal. Each year an estimated number
of 646 thousand people worldwide die from inadvertent falls.
Over 80% of fatalities caused by accidental falls belong to low
and middle-income countries. Around 37.3 million fall cases
require medical help and attention yearly. The most significant
number of fatal falls involved older adults aged 65 years and
above [1].

Rubenstein studied the risk factors for falls in elderly people
[2]. Results in their study showed that some of these risk factors

include, but are not limited to, being older than 80 years old,
muscle weakness, arthritis, depression, previous falls, the use of
several medications, the use of an assistive device, impairments
in gait, balance, cognition, and vision. Most elderly falls result
from a combination of multiple factors. They also stated that
the significance of falls among elderly people is not limited
to the fact that the frequency of occurrence of falls increases
with old age, but also that the injury rate is highest among the
oldest subjects who have a history of multiple previous falls.
This leads to the unfortunate increase in the expenses of medical
services and rehabilitation, but more importantly, it raises the
likelihood of disabilities and fatalities [2].

Reducing the risk of elderly falls is significantly important
from social and economical point of views. Therefore, preven-
tion strategies should emphasize education, training, creating
safer environments, establishing effective policies to lower
susceptibility, and prioritizing elderly fall-related research [2].
In this context, there is increasing interest in the prediction
of elderly falls to reduce its risk. Swanenburg, de Bruin,
Uebelhart, Mulder [3] studied whether force plate variables can
be used to predict multiple fallers though statistical analysis.
They found that the amplitude of medial-lateral movements in
single-task conditions was a significant independent predictor
of elderly fallers, along with having a history of multiple
falls [3]. Howcroft, Lemaire, Kofman, and McIlroy [4] found
statistical significant differences in the static posturography
measures between fallers and non-fallers. In this study, they
investigated eyes open and eyes closed standing posturography
with elderly adults and were able to identify differences and
determine the measure cut-off scores for classifying prospec-
tive fallers, single-fallers, multi-fallers, and non-fallers [4].
Howcraft, Lemaire,and Kofman [5] also studied prediction of
elderly falls using machine learning where their highest rank
classification model achieved 65% accuracy and 59% sensitiv-
ity, with pressure-sensing-insole and left-shank-accelerometer
as input features [5]. Pressure sensing insoles have been used
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thoughout the literature to predict or analyze chronic medical
conditions and diseases in elderly people such as Parkinson’s
disease [6], dementia [7], and elderly falls [8].

Properties of cyclostationarity are used in modeling and
analysis of gait and ground reaction force (GRF) signals [9] [10]
[11]. Sabri et al. [9] proposed an alternative framework for the
analysis of GRF signals, based on cyclostationary properties
rather than the traditional use of signal processing methods,
which assume statistically stationary signal characteristics. The
proposed framework was able to model the periodicity of the
signal statistics and showed improved results in demonstrating
the development of runners’ fatigue identification. Zakaria et al.
investigated and exploited the Cyclostationary (CS) properties
and indicators such as the cyclic autocorrelation function. Their
work demonstrated that there is a significant difference in the
cyclic autocorrelation of fallers and non-fallers [10].

Another indicator of cyclostationarity is the degree of cy-
clostationarity (DS) [12] [13]. In this paper we investigated
the use of the degree of cyclostationarity as a single input
to different classification algorithms to identify elderly people
with falling risk. The developed classification models were
compared to classification models using classical time-domain
features. Three different walking conditions were considered in
the classification models: normal walking (MS), walking while
fluently naming animals (MF), and walking while counting
backward from 50 (MD). The proposed model did not only
improved the performance of the system but also reduced its
complexity.

This paper is organized as follows. The model description
section is subcategorized into the explanation of the dataset
used for training the model, the Cyclostationarity properties
used in the analysis of walking signals with light shed on
the degree of cyclostationarity, using ANOVA for selecting
ten best classical features for prediction of fallers and non-
fallers, and the five different machine learning models used for
classification. In section III, the results of the ANOVA tests
and the classification models are presented and discussed. The
paper is then concluded in section four, with a summary of
findings, contributions, limitations, and future work.

II. MODEL DESCRIPTION

In this paper five different classification algorithms are used
with two different feature sets and in three different walking
conditions. Therefore a total of thirty classification models were
implemented to classify elderly participants as fallers or non-
fallers.

A. Database Description

The database used in this study is from the original series of
the study by the LPE (Laboratoire de Physiologie de l’Exercice)
[14] and CHU (Centre Hospitalo-Universitaire) of Jean Mon-
net St-Etienne University [15]. They recorded the innersole
pressure signals of participants using The SMTEC electronic
Foot switches system shown in Figure 1. A pair of innersoles
(with different sizes) were fitted inside the subjects’ shoes. Each
innersole contains two independent foot switches placed at the

Fig. 1. The SMTEC electronic foot switches system [16].

heel and the toe and connected to a portable data logger worn
at the waist. A pressure of above 40g/cm2 activates the sensors
and defines the state of contact. The activation of the heal sen-
sors defines the first contact, while the last contact corresponds
to the time when the toe sensor goes off. According to the
manufacturer, the data is sampled from foot-switches at 100
Hz, which allows a temporal resolution of 10 ms. The signals
collected were processed using a software designed specifically
for the task by SMTEC software. The system was designed to
record four independent pressure signals: left heel, left toes,
right heel, and right toes. Elderly patients were recruited to
participate in this experiment and they were instructed to walk
wearing these sensors for 20 meters in a straight line. After
the test trial, each participant was asked to walk this distance
three times. The first time is the baseline where they walked
without performing secondary tasks. The second time, they
walked the same distance again but while de-counting from 50.
The third time, they walked while enumerating aloud as many
animal names as they could remember. Some measures were
taken while collecting the data to block other factors that could
influence participants’ walk. These measures included insuring
proper lighting, a quiet area, and the use of comfortable flat
shoes.

520 healthy elderly patients were recruited for building this
database at the Hospital University of Saint Etienne [15]. Their
age was 78±1.08. Out of the 520 subjects, 302 were females,
and 217 were males. Only 54 reported that they had previous
falls in the past while the rest reported that they had not. As
a first stage working with this largely unbalanced data, we
included in our study the 54 fallers and randomly chose 54
non-fallers to build classification models that can accurately
classify fallers and non-fallers.

B. Cyclostationary Analysis of Pressure Walking Signals

In human locomotion, the human walk can be considered a
movement that consists of repeated sequences of cyclic physical
actions or strides. Analyzing the cyclostationary characteristics
of the walking pressure signals can introduce new features that
are indicative of the risk of falling in the elderly [10].



Using cyclostationarity requires a constant number of sam-
ples per stride. Therefore, it is imperative to pre-process the
signal in order to compensate the speed fluctuation. This is
done by estimating this fluctuation as described in the work of
Bonnardot, El Badaoui, Randall, Danière, and Guillet [17] and
using interpolation in order to stretch the signal and compensate
speed fluctuation.

There exist two orders of cyclostationarity as demonstrated
in the work of Spooner and Gardner [18]. A signal S(t) is said
to be cyclostationary of order 1 with cycle T if the expectation
µS(t) of S(t), is periodic with period T :

µS(t)(t) = µS(t)(t+ T ) (1)

µS(t) represents the repetitive pattern in the signal. The
residual signal r(t) can be computed by removing µS(t) from
the signal:

r(t) = S(t)− µS(t)(t) (2)

A signal is considered cyclostationary of order 2 if the
autocorrelation CS(t) of the signal S(t) is periodic with period
T :

CS(t)(t2, t1) = CS(t)(t1 + T, t2 + T ) (3)

where,
t = (t2− t1)/2 (4)

and,
CS(t)(t2, t1) = CS(t)(t2 − t1) (5)

We define τ as,
τ = t2− t1 (6)

In the case of a cyclostationary signals of order 2 such as the
pressure signals involved in this study, the instantaneous auto-
correlation function is periodic and therefore can be represented
as a Fourier series as shown below [19]:

CS(t)[t, τ ] =
∑
v

CAFS [v, τ ]e
(−j2πvt) (7)

where, v is the cyclic frequency that belongs to the set of
cyclic frequencies such that, v=k/T and k ∈ Z. The cyclic
autocorrelation function CAF is defined as:

CAFS [v, τ ] = lim
T→∞

1

T

T−1∑
t=0

CS [t, τ ]e
(−j2πvt) (8)

In order to remove the influence of cyclostationarity at order
1 in cyclic autocorrelation, it is possible to compute the cyclic
autocorrelation CAFR[v, τ ] of the residual signal r(t), from
Equation (2), instead of the autocorrelation CAFS [v, τ ] of the
signal S(t).

With the CAF being a 3-dimensions representation of the
cyclostationarity of the pressure walking signal. It is possible to
also obtain another 3-dimension representation called the spec-
tral correlation SCDR(v, f) by taking the Fourier Transform
of τ to obtain a frequency f . In this case, all the information
are contained in the cyclic frequencies v associated to the
characteristics cycles of the signal. At other cyclic frequencies,
the spectral correlation should have zero energy. In figure 2, the

Fig. 2. The Spectral Correlation of the average walk pressure signal during
normal walking

Fig. 3. The degree of cyclostationarity of walk pressure signals during normal
walking with frequency v.

cyclic frequencies not associated to signal cycles are not zero
but are negligible since this is an estimated representation.

This representation is complicated to use directly as input
features for classification methods. Hence, the degree of cy-
clostationarity is used to summarize the cyclostationarity of
the signal with less complexity. Zivanovic and Gardner [12]
described the Degree of Cyclostationarity (DC) as a proper
measure of the degree of non-stationarity for stochastic pro-
cesses that exhibit cyclostationarity. The DC can be described
as the distance to the closest stationary process exhibiting a
comparable power spectral density. The cyclic frequency having
non-zero energy on the cyclic statistics of order 2 is a parameter
that proves the presence of a cyclostationary signal. The degree
of cyclostationarity is defined by the following equation:

DCvS =

∑
f |SCDR[v, f ]|2∑
f |SCDR[0, f ]|2

(9)

DCS =
∑
v

DCvS (10)

The pressure signals from the 4 sensors (toes and heels from
right and left feet) are synchronized and averaged to obtain
the degree of cyclostationarity DCvS which can be viewed in 2
dimensions integration on frequencies axis as shown on Figure
3. The summation DCS could serve as a valuable single feature
extracted from walk pressure signals for the identification of
elderly fallers and is used in the classification models explained
in the following sections.



Fig. 4. The average degree of cyclostationarity between fallers and non-fallers
in the case of MS walking condition

C. ANOVA Test for Statistically Significantly Features

Two sets of features are compared in this part of the study.
The features are extracted from the innersole pressure signals
of the 108 subjects divided equally between fallers and non-
fallers. The first set includes 10 classical features chosen
from well known time-domain features (10 CF), while the
second set includes a single feature, which is the degree of
cyclostationarity (DC).

The classical features extracted from the pressure signals are:
mean, rise time, fall time, pulse width, overshoot, undershoot,
duty cycle, slew rate, midcross, autocorrelation, standard devi-
ation, band power, median, root mean square, range, Pwelch,
skewness, interquartile range, kurtosis, and 95 percentile of
the signal distribution. The statistical significance of these
features to separate falling from non-falling elderly were tested
using a one-way repeated measures ANOVA [20]. The results
showed that 10 features out of those have statistically significant
differences between fallers and non-fallers, in at least 1 type of
walking condition. These features, considered in the following
as classical features are: pulsewidth (right foot), undershoot
(right and left feet), duty cycle (left foot), slew rate (right and
left feet), range (right and left feet), and skewness (right and
left feet).

The ANOVA test [20] was also conducted to determine
whether there is a statistically significant difference in the DC
between fallers and non-fallers in the three different cases of
walking. There were relatively few outliers in the three cases.
No statistical significant differences were found between faller
and non-fallers in the cases of MS (Figure 4) and MF (Figure
5) walking conditions. However in the case of MD case of
de-counting while walking, the average DC was statistically
significantly different (Figure 6) between fallers and non-fallers
(p<0.05).

D. Classification Models

Five classifier models were used: K-Nearest Neighbors [21],
Support Vectors Machines [22] with polynomial kernels of de-
gree 3, Artificial Neural Networks [23] with 10 nodes in a single
hidden layer, Decision Trees [24], and Logistic Regression [25].

Fig. 5. The average degree of cyclostationarity between fallers and non-fallers
in the case of MF walking condition

Fig. 6. The average degree of cyclostationarity between fallers and non-fallers
in the case of MD walking condition

The results of a 100 times 10 folds cross validation was
compared to the 10 times 10 folds cross validation and found
to have no statistical significant differences using the ANOVA
[20] test. Therefore, a 10 times 10 folds cross validation process
was chosen to be used in all classification models.

III. RESULTS AND DISCUSSION OF THE CLASSIFICATION
MODELS

Table 1 shows the results of the different supervised classi-
fication models with 3 different walking conditions, 2 different
feature sets, and 5 different classification methods. The best
performance with the ten classical features as inputs was
61.85% accuracy, 53.52% sensitivity, 70.19% specificity, and
64.24% precision using K-nearest neighbors as a classifier. The
use of the averaged degree of cyclostationarity as a single
feature instead of the ten classical features improved model
performance to 68.43% accuracy, 54.26% sensitivity, 82.59%
specificity, and 75.83% precision using K-nearest neighbors.

The statistical t-test for pairwise comparison was computed
and it was confirmed that there is statistical significant differ-
ences between the KNN model of highest accuracy and the
other models listed in the table.



TABLE I
RESULTS OF THE CLASSIFICATION MODELS

Walking Condition Feature Set Classification Model Accuracy% Sensitivity% Specificity% Precision%
MS 10 CF 52.04% ± 2.54% 39.07% ± 13.04% 65% ± 14.14% 53.24% ± 4.90%

DC 63.06% ± 1.27% 55.56% ± 2.14% 70.56% ± 2.54% 65.40% ± 1.75%
MF 10 CF KNN 48.06% ± 2.20 % 29.07% ± 20.62% 60.56% ± 9.24% 38.61 %±18.23 %

DC 48.52% ± 5.37% 36.48% ± 15.02% 67.04% ± 22.88% 46.58% ± 8.07%
MD 10 CF 61.85% ± 2.17% 53.52% ± 3.32% 70.19% ± 2.95% 64.24% ± 2.68%

DC 68.43% ± 1.66% 54.26% ± 0.89% 82.59% ± 3.05% 75.83% ± 3.38%
MS 10 CF 58.15% ± 1.62% 77.41%± 7.19% 38.89%± 7.15% 55.95% ±1.31 %

DC 62.78% ± 1.62% 80.37% ± 1.79% 45.19% ± 1.79% 59.45% ± 1.20%
MF 10 CF SVM 50.56% ± 5.51% 52.22%± 5.08% 48.89% ± 7.16% 50.65% ± 5.28%

DC 56.85% ± 2.70% 59.07% ± 20.22% 54.63% ± 16.22% 56.93% ± 1.90%
MD 10 CF 59.91% ± 0.62% 70.19% ± 4.32% 28.70% ± 2.66% 56.10% ± 0.33%

DC 63.33% ± 1.81% 90.63% ± 3.24% 56.48% ±6.25% 61.87% ± 2.23%
MS 10 CF 60.00%± 5.55% 63.15% ± 16.76% 56.85% ± 12.92% 59.37% ± 6.05%

DC 62.69% ± 6.83% 72.22% ± 26.99% 53.15% ± 24.65% 60.39% ± 5.81%
MF 10 CF ANN 57.31% ± 7.20% 54.07% ± 19.96% 60.56% ± 18.06% 58.36%± 6.72%

DC 56.48% ± 6.16% 72.96% ± 12.35% 40.00% ± 13.92% 55.09% ± 5.44%
MD 10 CF 59.91% ± 0.62% 60.93% ±26.12% 70.93% ± 11.84% 69.73% ± 12.45%

DC 65.93% ± 8.83% 91.11% ± 3.24% 28.70% ± 2.66% 56.10% ± 0.33%
MS 10 CF 54.44% ± 2.86% 55.00% ± 5.02% 53.89% ± 3.54% 54.36% ± 2.67%

DC 64.63% ± 2.95% 62.41% ± 5.52% 66.85% ± 2.82% 65.26% ± 2.52%
MF 10 CF Decision Trees 51.85% ± 4.39v 50.74% ± 7.67% 52.96% ± 5.03% 51.75% ± 4.37%

DC 44.44% ± 5.38% 44.81% ± 7.45% 44.07% ± 5.84% 44.35% ± 5.62%
MD 10 CF 56.76% ± 4.56% 56.11% ± 6.18% 57.41% ± 6.05% 56.88% ± 4.45%

DC 58.33% ± 1.85% 54.81% ±3.83% 61.85% ± 2.50v 58.95%± 1.82%
MS 10 CF 56.11% ± 3.09% 62.22% ± 3.29% 50.00% ± 4.09% 55.47% ± 2.85%

DC Logistic 50.28% ± 3.15% 75.19%± 5.32% 25.37% ± 4.46% 50.17% ± 20.8%
MF 10 CF Regression 55.00% ± 4.46% 57.96%± 4.79% 52.04% ± 6.79% 54.85% ± 4.36%

DC 49.72% ± 2.55% 73.33% ± 5.87% 26.11%± 4.66% 49.79% ± 1.69%
MD 10 CF 59.81% ± 0.48% 62.96% ± 2.31% 30.74% ± 0.62% 56.21% ± 0.34%

DC 60.56% ± 2.06% 88.89% ± 0.36% 58.15% ± 3.40% 60.11% ± 2.06%

IV. CONCLUSION

Utilizing the degree of cyclostationarity can improve model
predictive performance while reducing its complexity. There-
fore, we advocate its inclusion for elderly fall-risk prediction.
In addition, the MD walking condition (de-counting as a dual
task) improved model prediction accuracy in the KNN, SVM,
ANN, and Logistic Regression classifiers. KNN achieved the
highest accuracy using a single cyclostationary feature during
the MD walking condition. A drawback that needs to be noted,
is that KNN compared to other classification methods requires
a large real time computation as it needs the complete data for
every classification. This opens the door to look into further im-
provement and optimization. As a future perspective, we intend
to combine all the features from the 3 walking conditions, other
sets including physiological data and additional cyclostationary
features as inputs to the classification models and compare their
outcomes.We also plan to develop feature selection models such
as Relief-F that was used in the literature of similar work and
has been found to improve prediction results of fallers and non-
fallers.
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