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Abstract—In this paper we investigate the possibility of using
measurement-based propagation models in the framework of
Dynamic Spectrum Access (DSA), where secondary users can op-
portunistically access the licensed spectrum of a primary system.
In principle this will provide a precise representation of the radio
environment since it takes into account all environmental details
at a given period of time. However the accuracy of the estimated
models will depend on sensor density, propagation factors, and
any external error. We study the impact of these factors on the
accuracy of the estimated model and the satisfaction of primary
and secondary networks. We also propose a guideline to overcome
these problems in DSA scenarios by using a power margin.

I. INTRODUCTION

Dynamic spectrum access (DSA) has become an intensively
studied approach for increasing the efficiency of spectrum
use [1]–[3]. The use of cellular systems in the so-called TV
white spaces (TVWS) has gained significant amount of interest
recently [4], [5], and secondary access to other frequency
bands has also been considered in the literature [6], [7].

Propagation models play a key role in many DSA related
decisions. They are used in particular to estimate the interfer-
ence experienced by a primary user for a given secondary
transmitter configuration [8]–[12]. In the current regulation
proposals regarding DSA [13], [14], propagation models are
usually standardized, with either a single propagation model
or a parametric family. These models are used for diverse
environments on a country-wide scale. As shown in [15],
any fixed propagation model can result in large estimation
errors especially in typical urban environments, and hence can
result in either excessive interference towards the primary or
unnecessary loss of secondary capacity, depending on the type
of the error. There is also some existing work on the estimation
of customized propagation models [16], where propagation
models are estimated based on local measurements. However,
the impact of the different factors on the accuracy of such
methods are still not thoroughly investigated. In this paper, we
study the feasibility of a measurement-based approach for the
determination of a customized propagation model, in which the
secondary transceivers carry out geolocalized measurements of
path losses. These measurements are then combined to form
an estimate of the propagation model. In particular, we study
in detail the accuracy with which propagation models could be

estimated at the run-time of the system. We make a detailed
numerical analysis on the number of measurement points
needed for reaching a given level of accuracy, and we also
study how additional impairments such as localization errors at
measuring terminals influence the results. We give our results
both in terms of error distributions of the different coefficients
of a standard power law path loss model complemented with
model of shadow fading, as well as in terms of the impact
of these results on the interference probability in a DSA
scenario. We also briefly discuss how the studied approach
could be implemented in the context of existing wireless
communication networks. It should be noted that the model
can be also extended to any other systems that require accurate
and localized path loss models such as the case of small cell
scenario, but we limit our study in this paper to the case of
DSA for TVWS, as an illustrative example.

The rest of this paper is structured as follows. In Section II
we discuss our system model for path loss estimation in
more detail. We then present the used evaluation scenarios
for studying the impact of measurement configurations on
the accuracy of path loss estimates within our model in
Section III, and discuss our results in Section IV. Finally, we
draw conclusions and discuss future work in Section V.

II. SYSTEM MODEL FOR PATH LOSS ESTIMATION

Most of the work on TV white space assumes that the
path loss model and its parameters are known. Other existing
works use terrain-based propagation simulators to generate
the path loss estimates. The problem with the first approach
is the potentially large errors originating from the regions
the propagation model is not well suited to. Although the
second approach can provide accurate models, it requires very
detailed information about the environment (e.g. information
about trees, pedestrians, cars, in addition to buildings). The
detailed information is very difficult to obtain especially for
small obstacles. In addition, the generation of propagation
models using terrain-based simulators with the aforementioned
required level of details may necessitate unacceptable compu-
tational costs. Because of these issues we study in this paper a
third alternative, a measurement-based approach. We assume
that some of the transceivers in the secondary network have



information on their locations, and are capable of carrying
out measurements on the path loss between themselves and
active secondary transmitters. The collection of information
can be performed through, for instance, the Minimization of
Drive-Tests (MDT) functionality, which is an LTE release 10
feature [17]–[19]. The measurement results can then be com-
bined into path loss models to be used within the region. Our
approach is closely related to the use of spatial interpolation
techniques as discussed in [20].

We adopt here the classical power law model for the large-
scale distance-dependent path loss component combined with
log-normal shadowing. That is, we assume that at distance d
the overall path loss in dB can be written as

L(d) = k + α log d+ χ, (1)

where k and α are constants to be determined, and χ is a
zero-mean normal random variable with standard deviation σ,
also to be determined. We assume fast fading to be averaged
out during the measurement phase, and accordingly do not
consider its impact in the following. This is done mainly
for space reasons, as incorporating fast fading presents no
fundamental difficulty, but would significantly increase the
complexity of the expressions obtained below.

Now, given a collection of measured path loss values, the
constants k and α can be found by simple linear regression.
We apply the ordinary least squares estimator for solving this
regression problem. This results in estimates kest and αest for
the path loss coefficients. Provided that the model in (1) is
accurate, the estimated values converge to true values k and
α when the number of measurement points becomes large
enough. Once the distance-dependent part has been found,
σ can be estimated as the sample standard deviation of the
residuals, that is, the differences between the measured values
and the fitted distance dependent path loss model. We shall
denote this estimate in the following by σest.

The key issue that we shall now study is how does the
number and accuracy of the path loss measurements influence
the accuracy of these estimates, and how large is the impact
of any remaining inaccuracies in the context of DSA. As
mentioned above, provided that the overall path loss model
is correct, in the limit of large number of measurements high
accuracy is to be expected. However, especially during the
initialization phase of the system or due to the sparseness of
the secondary network only very limited number of measure-
ments might be available, resulting in potentially significant
errors in the estimates. Further, these errors will depend on the
shadowing process, the locations the measurements are carried
out, and possible inaccuracies either in the measurement
results themselves or in the location estimates.

III. EVALUATION SCENARIOS AND METRICS

In this section, we shall describe the evaluation scenario and
the used metrics. We consider a scenario in which a cellular
network is acting as a secondary system using TV white space,
as shown in 1. This scenario is chosen due to the crucial impact
of path loss accuracy in this case. In order to enable spectrum
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Fig. 1. An illustrative example of the considered scenario.

sharing we assume that the secondary network can access to
a database where the positions and channels used by the TV
towers can be found [21]. This work consider only downlink,
and can be extended to uplink using the framework in [22].
We assume that the secondary network knows the positions of
its own base stations. To protect primary network, we define
interference probability Print as the probability that a primary
receiver experience an interference I higher than a defined
threshold ιmax due to secondary activity [10], [11], [23]:

Print , P {I ≥ ιmax} . (2)

This probability should be lower that a defined threshold ε for
all primary receivers. Since the latter have unknown positions,
the Worst Case Position (WCP) is normally used [22], [24].
The WCP is defined as the closest position inside the primary
coverage area to the secondary transmitter. In the case we
have a distant-dependent path loss and a shadowing factor
with constant standard deviation, respecting the interference
constraint at the WCP means that this constraint is respected in
all receiver positions as well. Hence, the secondary transmitter
should estimate its allowed transmit power, PS , taking into
account the interference constraint considering the WCP. The
first step is therefore to estimate the path loss model between
its antenna and a receiver antenna at the WCP, for which
the secondary transmitter knows the separating distance d.
Then the determination of PS is straightforward when the
propagation model is determined.

In our model, the secondary receivers are spread over a large
area and can decode the signal of the base stations, which is
the case of any cellular network. Hence, these receivers can
estimate the path loss model with some errors as explained
in the previous section. By considering (2) and assuming a
log-normal shadowing factor, the secondary can estimate its
transmit power, in the second step, using

PS = ιmax−
√
2σesterf−1 (1− 2ε)+kest+αest log10 (d) . (3)

We assume in this paper that the secondary receiver posi-
tions are uniformly distributed inside a circle of 2 km radius
centered at the secondary transmitter (i.e. base station), and the
WCP is at a distance d from the latter; we assume further that
distance d is lower than 2 km so that the WCP is covered by the
measurement sensors. The 2 km circle is not the coverage area



of the considered transmitter but it can include the coverage
area of several transmitters that belong to the same operator.
We also assume that the path loss has a distance-dependent
factor that follows the Okumura-Hata model [25], [26], and
a Gaussian shadowing factor (in the logarithmic scale) with
standard deviation σ. The performance evaluation is made in
an urban zone using a frequency of 700 MHz, where the base
station antenna effective height is 30 m and the secondary
receiver antenna height is h. The primary receiver is either
at 1.5 m or 10 m to show the difference between the cases
where the primary antenna is at floor level or at roof level.
The system performance is evaluated through several metrics:

• The distribution of the error percentage in the estimated
path loss exponent (eα), path loss constant (ek), and
shadowing factor standard deviation (eσ), given by

eX = 100
(Xest −X)

X
, (4)

where X stands for any of the evaluated factors (i.e. α, k,
and σ), and Xest is the estimated value of these factors.

• The distribution of the interference probability experi-
enced by a primary receiver at distance d from the
secondary transmitter. Assuming a normal distribution of
the shadowing factor, and using (2) and (3), we can write

Print =
1

2

[
1 + erf

(
kest − k + (αest − α) log10(d)√

2σ

−σest

σ
erf−1 (1− 2ε)

)]
. (5)

The performance of the path loss and power estimators
is affected by the presence of different errors generated by
different sources. In this paper we study the impact of the
following parameters that induce errors in the estimators:

• Sensor density: It influences directly the estimation of the
path loss parameters, especially α and k. We consider that
the density is in the interval [20, 200] sensors/km2, which
is a typical interval in cellular networks.

• Shadowing factor standard deviation: As can be seen from
(5), this factor has a direct impact on the interference
probability. It impacts also the estimation of the path loss
exponent and constant.

• Noise power: This includes all errors related to the
measurement hardware such as errors in the noise power,
additional interference from far away transmitters of the
same system, or antenna gains. Herein, we assume that
these errors follows (in the logarithmic scale) a normal
distribution, as it is usually considered in the field, with
zero mean and a standard deviation of 1 dB.

• Positioning error: All positioning mechanisms estimate
the location with certain precision. Therefore, we assume
that the sensors have an positioning error that is uniformly
distributed in the interval [-15,15] m.

• Wall penetration losses: The secondary sensors can be
outdoor or indoor. In the latter case, several walls can
separate the sensor from the transmitter and induce some

penetration losses. In this paper we assume that the
number of blocking walls can be 0, 1, or 2, and that
the penetration loss of one wall is 10 dB. Hence, we
consider an additional received power with a discrete
uniform distribution on the integers 0, 10, and 20 dB.

• Sensor antenna height: The secondary sensors can also
have different antenna heights hr since they may be at
different floors of a building, for instance. The difference
in the antenna height will lead to additional variation in
the path loss. The receiver antenna height is included in
the path loss model for medium-small cities through the
following formula [26]:

he = [1.1 log10(f)− 0.7]hr − 1.56 log10(f) + 0.8, (6)

where f is the central frequency, which is considered to
be 700 MHz. For this frequency and for antenna height
between 1.5 m and 10 m, a difference of 20 dB can be
observed. Therefore we consider an additional power that
follows a uniform distribution in the interval [0, 20] dB1.

IV. RESULTS

We have evaluated the performance of the path loss and
transmit power estimators under several conditions mapped
into three scenarios:

• Scenario 1: We assume that there is no error in the
measurements reported by the sensors.

• Scenario 2: We consider only positioning errors.
• Scenario 3: We consider positioning, noise, antenna

height, and wall penetration loss errors.
For all scenarios we generated 104 samples with different
sensor positions, shadowing factor, and errors, after which we
collected the generated statistics considering a target interfer-
ence probability ε = 0.05.

We shall first study the impact of the sensor density and the
shadowing standard deviation on the estimators in scenario 1.
In Fig. 2, we show the impact of sensor density and shadowing
standard deviation on the distribution of the error percentage
and the interference probability when the primary receiver
antenna height is 1.5 m and the distance separating the primary
receiver and secondary transmitter d is 1.5 km. We can first
notice that the errors are unbiased (i.e. the error percentages
have zero mean while the interference probabilities have a
mean equal to ε). The figures show also that the variances of
the errors in the path loss exponent and constant are an increas-
ing function of the shadowing factor standard deviation, but
the latter has insignificant impact on the error on the standard
deviation. Although the interference probability, as it can be
seen from (5), depends on the errors in the path loss constant
and exponent that are affected by the standard deviation, the
latter does not have high impact on the interference probability.
This is due to the fact that the error increases in the exponent
and the constant are compensated by the increase of the value
of the standard deviation as it can be seen in (5). For high
sensor density, the errors in the path loss factors do not exceed

1For large city, the interval will be [0, 4] dB.
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Fig. 2. The distribution of the error percentages and interference probability for different values of sensor density and shadowing standard deviation in
scenario 1, when primary antenna height is 1.5 m.

few percents and the interference probability is always lower
than 0.6. However, the error can reach more than 20 % in the
path loss exponent when the density of the sensors is around
20 sensors/km2. This leads to high interference probability that
exceeds 0.1. These results show that although the average
interference probability respects primary constraint in the case
where no errors are considered, the interference probability can
reach high value, which cannot be tolerated by the primary
system. Hence, it is very important to take into account the
distribution of the interference probability and not only its
average, as considered by most of the studies.

In Fig. 3, we show the distribution of the interference
probability when primary antenna height is 10 m, which repre-
sents the worst case for TV receivers in operational networks
when the antenna is at the roof of a building. The figure
shows, clearly, the high impact of the difference in antenna
heights on the interference probability. This is due to the 20 dB
difference that appears in the estimated path loss constant k
due the difference between the antenna heights of the primary
receivers and the secondary sensors. Moreover, the value of
σ has very high impact, since the factor including the error
in the path loss constant is the influential factor in this case.
It should be noted that the interference probability can reach
more than 0.95 for a standard deviation of 6 dB.

We have also evaluated the impact of positioning errors
in scenario 2. Our results (not shown here for simplicity)
indicate that the impact of these errors is very low, due to
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Fig. 3. The distribution of the interference probability for different values of
sensor density and shadowing standard deviation in scenario 1, when primary
antenna height is 10 m.

the small error considered in positioning systems. These errors
correspond to the ones obtained in GPS systems for outdoor
environments. In case we assume lower precision the impact
is expected to be higher. This study is left for future work.

In scenario 3, we have studied the impact of the different
measurement errors considering the TV receiver antenna is at
10 m. The results are depicted in Fig. 4 and show how these
errors impact system performance. The high impact appear
clearly in the intolerable errors in k, σ and the generated
probability of interference. The estimation of the path loss ex-
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Fig. 4. The distribution of the error percentages and interference probability for different values of sensor density and shadowing standard deviation in
scenario 3.

ponent is not significantly affected since, with the exception of
the positioning error, all errors are additive in the logarithmic
domain. This is reflected by the fact that the mean error is
shifted by a significant percentage. It is also interesting that
these errors have also moved the average error in the estimated
shadowing standard deviation, where high errors that can reach
the double of the real standard deviation can be observed for
low σ. This is due to the additional stochastic parameters
(i.e. the additive errors) that have a total standard deviation
of 10.2 dB, as our numerical estimation showed. This makes
the total standard deviation of the measured power to vary
between 11.8 dB and 15.7 dB when the real standard deviation
varies between 6 dB and 12 dB.

As it was shown in the results, the interference probability
can be very different depending on the sensor configurations.
Since the average value of the interference probability does
not provide comprehensive information about system perfor-
mance, the primary network would prefer a stronger metric
that guarantee the QoS for its users. Therefore, a better metric
can be the 95th percentile of the probability of interference,
which guarantee that in 95 % of the cases, the interference
probability will be less than ε. In addition and as it can be
seen from (5), the interference probability depends on distance
d. In Fig. 5 we show the 95th percentile of the interference
probability as a function of the distance in the two study cases
of scenario 1, and in scenario 3.

To comply with primary constraint, the secondary network
should extract from PS in (3) a power margin M , which can
be computed for each sample by combining (3) and (5):

M = kest − k + (αest − α) log10(d)

−
√
2(σest − σ)erf−1 (1− 2ε) . (7)

The 95th percentile of the margin given in (7) is depicted in
Fig. 6 for the different scenarios. We use the 95th percentile to
guarantee that in 95 % of the cases the interference probability
is satisfied. This margin reflects the impact of the estimation
errors on secondary network performance; when high margin
is required, the allowed transmit power will be lower and thus
the secondary performance will decrease. Fig. 6 shows that
the required margin can be less than 4 dB for a distance less
than 2 km if there is no additional errors. However this margin
can reach up to 30 dB if all errors are considered. In addition,
the required power margin is not a monotonic function of the
distance and it has a minimum around 1.2 km in this case.
A more interesting result is the fact that, although for low σ
the 95th percentile of the interference probability is very high,
the power margin is very low. This is a direct outcome of (5)
and (7), where the first shows that the interference probability
is inversely proportional to σ while the second shows that
the margin depends only on the error on σ. This is very
important since it confirms the known fact that the interference
probability can be very high, while the interference values
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Fig. 5. The 95th percentile of the interference probability as a function of the distance d for (a) scenario 1 when primary antenna height is 1.5 m, (b) scenario
1 when primary antenna height is 10 m, and (c) scenario 3 when primary antenna height is 10 m.
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Fig. 6. The power margin that should be extracted from the estimated power to guarantee that the 95th percentile of the interference probability is lower
than 0.05 for (a) scenario 1 when the primary antenna height is 1.5 m, (b) scenario 1 when the primary antenna height is 10 m, and (c) scenario 3 when the
primary antenna height is 10 m.

are very close to the specified threshold when the standard
deviation is small enough. It should be noted that the margin is
computed assuming that the errors are known in each sample,
which makes these results a lower bound for any realistic
margin.

V. CONCLUSIONS AND DISCUSSION

In this paper we have studied the possibility of estimating
path loss models for functional networks, the impact of
different factors on the accuracy of the estimation, and the
impact of the latter on the performance of Dynamic Spectrum
Access (DSA). We have also studied the required margin that
should be extracted from the estimated power by the secondary
network in case of estimation errors. Based on our results, we
can draw the following conclusions:

• Sensor density has a paramount impact on all propagation
components (i.e. path loss constant and exponent, and
standard deviation of the shadowing factor), interference
probability, and required power margin.

• The real standard deviation of the shadowing factor has
low impact on the propagation constant and exponent,
and no impact on the shadowing standard deviation
and interference probability, when no external errors are
present in the system. However it has always a significant

impact on the power margin, especially when all errors
are considered. Moreover the impact of this factor on
the path loss exponent and constant does not change
significantly when the external errors are considered, but
it drastically increases the errors of the standard deviation
and interference probability in this case.

• The external errors do not impact the propagation ex-
ponent but has a crucial impact on the other factors.
This is logical since the considered errors are additive.
The difference in the antenna heights, which has a high
impact, can be compensated by a protection factor if we
know the distribution of the antenna heights.

• The power margin can be estimated if the distributions
of the errors in the propagation factors are known. The
determination of these distributions is a very interesting
problem and depends on the scenario. This paves the way
to develop secondary networks with reliable guarantees
on respecting primary constraints.

• The power margin does not change too much with the
distance (i.e. only couple of dBs) but it is highly depend-
ing on the external errors, the real standard deviation
of the shadowing factor, and the sensor density. It is
an increasing function of the standard deviation and, as
expected, decreases when the sensor density increases.



• In existing works, the interference probability has been
considered as a metric to protect primary systems. How-
ever, when dynamic estimation or propagation models are
considered the interference probability will depend on the
distribution of the errors, and hence this probability will
have itself a distribution. In addition, using the average
values of the errors and interference probability does not
provide the necessary information about system perfor-
mance. For instance, the estimated propagation constants
and interference probability can be the same as the real
ones in average, but they might have high errors in some
cases. Therefore we argue that higher moments or/and
given percentiles of the interference probability should
be considered instead of the average.

• The current regulation for TV white space does not
provide good mechanisms to protect primary systems,
especially in urban areas where the simplistic propagation
models may lead to significant errors in interference
estimation. Our study can be used as ground base for
measurement-based estimation of the path loss models
that can be used for interference assessment when the
traditional models are not suitable. Measurement-based
models should be then required by regulators to allow
opportunistic access. More specifically, the secondary
should report their measurements and the characteristics
of their sensors to primary networks or regulators. Ac-
quiring this type of information will not be a problem
in future networks especially when the minimization of
drive-tests is deployed [17], [18].

Based on this work, we are now developing analytical and
numerical methods to determine the error distributions in the
estimated factors using standard deviation distribution. We are
also considering the case when there is a structural mismatch
between the considered model and the real propagation model,
which can be different than Okumura-Hata model. A model
will be also developed for the case where secondary sensors
are not uniformly distributed and with correlated shadowing.
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